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ABSTRACT

Online Social Networks (OSNs) provide a unique opportu-
nity for researchers to study how a combination of tech-
nological, economical, and social forces have been conspir-
ing to provide a service that has attracted the largest user
population in the history of the Internet. With more than
half a billion of users and counting, OSNs have the poten-
tial to impact almost every aspect of networking, including
measurements and performance modeling/analysis, network
architecture and system design, and privacy and user behav-
ior, to name just a few. However, much of the existing OSN
research literature seems to have lost sight of this unique op-
portunity and has avoided dealing with the new challenges
posed by OSNs. We argue in this position paper that it is
high time for OSN researcher to exploit and face these op-
portunities and challenges to provide a basic understanding
of the OSN eco-system as a whole. Such an understanding
has to reflect the key role users play in this system and must
focus on the system’s dynamics, purpose and functionality
when trying to illuminate the main technological, economic,
and social forces at work in the current OSN revolution.

1. INTRODUCTION
To provide perspective, consider one of the more popu-

lar OSNs, Facebook. Launched in 2004 and opened up to
the general public in 2006, its user base is close to an esti-
mated 200 million as of early 2009, with a reported growth
rate of close to 300,000 new users per day. Its distributed
infrastructure employs CDNs and consists of about 10,000
servers worldwide (as of early 2008), with reported plans to
add another 50,000 servers over the next few years [2]. As of
late 2008, Facebook reportedly served over 300,000 images
per second and hosted 10 billion photos in total. Since each
photo is stored in 4 different sizes, this translates into some
40 billion of stored files, requiring just over 1 PB of photo
storage alone [1].

Despite these staggering numbers, only a minuscule num-
ber of OSN research papers have considered issues such as
Facebook’s system design and architecture, user-perceived
performance, active user population and network dynamics,
churn and user interactions, or user behavior and privacy
issues (see for example [6] and references therein). Instead,
inspired by recent developments in the new field of “Net-
work Science”, the vast majority of OSN research papers
has largely ignored much of the readily available domain
knowledge in this area. It has focused on simple connectiv-
ity structures such as inferred friendship graphs and much
of the characterization and modeling work involving these

“large-scale and complex” network structures has relied on
techniques from the tool box offered by “Network Science”.
A hallmark of these techniques is that they tend to focus on
graph metrics such as node degree distribution, clustering
coefficient, density, diameter, or betweenness centrality that
are purely descriptive in nature (e.g., see [3, 7] and also the
discussion in [10]). As such, they say little or nothing about
the graphs’ actual structure or dynamics. More importantly,
they reduce OSNs to generic and static, and hence relatively
uninteresting networked systems.

However, real-world OSNs are by nature highly dynamic
structures. For example, in addition to the dynamics that
is due to new users joining the system (generally by creat-
ing a new account) and existing users leaving the system
(though typically without actively announcing their depar-
ture or closing their account), there is also the dynamics
that results from active users interacting with each other.
Here we focus on the former and note that at any point in
time, the active users of an OSN may be just a fraction of
all the users that have joined the network in the past. In
fact, the user-based churn may be so significant as to render
any friendship graph that results from inferred user rela-
tionships aggregated over long periods of time meaningless
or non-informative. OSNs treat users as first-class citizen
(e.g., they are the creators of content), and understand-
ing their role, capabilities, interactions (direct or indirect,
e.g., via posted photos), behavior, and dynamics is essen-
tial to studying the OSNs’ impact on the Internet. More-
over, users can participate in different OSNs and migrate
between different OSNs, thus creating a competitive mar-
ketplace or eco-system where system design, user-perceived
performance, offered services and applications, and privacy
issues impact an OSN’s popularity, user base, and growth
rate and ultimately contribute to or determine whether the
OSN can survive in this competitive environment.

To become more relevant and provide a solid understand-
ing of the impact of the current OSN revolution on key
socio-technological and socio-economic aspects of the Inter-
net, we argue in this paper that OSN research has to change
course and has to do so quickly. In particular, we maintain
that future OSN research has to (1) be user-centric rather
than user-agnostic, (2) abandon the traditional treatment of
OSNs as static networks and become serious about dealing
with the full-fledged dynamic nature of actual OSNs, and
(3) give up on traditional descriptive modeling approaches
that have proven to be little more than relatively uninter-
esting data fitting exercises. To succeed, such a revamped
OSN research agenda will necessarily have to be accompa-



(a) Step 1: HSF(5,0)

(b) Step 2: HSF(5,1)

(c) Step 3: HSF(5,2)

Figure 1: 3-step construction of the (static) friendship graph f-toyfb associated with our toy OSN toyfb.

nied by parallel re-evaluations of currently pursued measure-
ment techniques and data collection efforts and by simulta-
neous efforts aimed at developing novel and non-traditional
tools for mining, analyzing, characterizing, and modeling
the next-generation OSN measurements. In addition, the
agenda will have to be more inter-disciplinary by actively
involving domain experts from the social sciences, mathe-
matical sciences, and engineering.
Caveat emptor: One the one hand, we do not claim that
the highly stylized toy OSN considered in this paper has
anything in common with real-world OSNs. We only use it
to illustrate some of the main issues that arise when study-
ing OSNs from a purely static versus a truly dynamic point
of view. On the other hand, the toy OSN used in this paper
has been chosen for a reason. It exhibits many of the prop-
erties that have featured prominently in studies of inferred
OSN friendship graphs that have been reported in the OSN
literature in the past; e.g., power-law node degree distri-
bution, local clustering, hierarchy, small-world property, or
low diameter. However, only future measurements of the de-
tailed dynamics of real-world OSNs will tell if our toy model
described below has more than just educational appeal and
is indeed of practical relevance.

2. IT’S ALL ABOUT DYNAMICS!
Traditional OSN research has focused mainly on inferred

friendship graphs and has treated OSNs by and large as
static systems. To illustrate the importance of one of the
aspects of their dynamic nature (i.e., new users joining and
old users leaving the system), we consider the following sim-
ple toy OSN, denoted by toyfb. To start, we assume that

the static friendship graph f-toyfb associated with our toy
OSN toyfb belongs to the family of hierarchical scale-free
(HSF) networks introduced and analyzed in [4]. These net-
works are characterized by a pair of parameters (n,m): n
denotes the number of nodes in a fully meshed cell, and m
denotes the number of levels in the hierarchy. The construc-
tion proceeds by generating n cells of size n and connecting
them in a certain way. Using the thus generated structure
as a new cell, the process is repeated m times to obtain
an HSF(n, m) graph with m well-defined levels of hierar-
chy. Figure 1 shows the 3-step process of constructing an
HSF(5, 2) network, with 312 (bi-directional) links represent-
ing all the friendship relationships that have ever been es-
tablished among the nm+1 = 125 users. Thus, like in many
real-world OSNs, friendship relationships are not actively
“de-activated”, with the result that the friend list of any
user in our toy OSN toyfb does not decrease over time.
HSF networks can be shown to have a power-law node de-
gree distribution, rich local clustering properties (i.e., the
clustering coefficient at a node with degree k follows a scal-
ing law of the form 1/k, meaning that the higher a node’s
degree, the smaller its clustering coefficient), and a well-
defined “cluster-within-cluster” structure [4].

2.1 Beyond friendship graphs
To demonstrate how static friendship graphs such as f-

toyfb can result from a very simple temporal dynamics, we
describe in the following a very elementary and admittedly
highly stylized evolutionary process by which the 125 users
join our toy OSN, befriend other users, or become inactive
by “de-activating” existing friendship relations (but without



updating one another’s friend lists). They can do so at a
finite number of points in time in the interval [0, 1]; that is,
at times t ∈ T = {1/16, 2/16, . . . , 15/16, 16/16}.

The evolution of toyfb up to time t = 1/4 is illustrated
in Figure 2 and proceeds as follows. At time time t = 1/16,
the active (mutual) friendship relationships are shown in
Figure 2(a). Next, at time t = 2/16, all the friendship re-
lationships from time t = 1/16 (with one exception) are
de-activated and the newly established links are shown in
Figure 2(b). This process is repeated at time t = 3/16 (see
Figure 2(c)) and t = 1/4 (see Figure 2(d)). The rest of
the evolutionary process proceeds in three identical stages,
between times (1/4, 1/2], (1/2, 3/4], and (3/4, 1], with the
only exception that the connections to the center node in
the center cell of the HSF(5, 2) graph are made from the
left, bottom, and right generic cells, respectively.

Careful accounting of the friend lists of all the 125 users
in our toy OSN shows that the static friendship graph that
would result from a full crawl of toyfb is identical to f-

toyfb, mainly because the friend lists maintained by the
users do not reflect any ”de-activation” of friendship rela-
tionships. Also note that at any time t, the “active” part
of toyfb, i.e., f-toyfb(t) is (strongly) connected and that
the entire toy OSN consists of this connected component
and a number of singletons (i.e., sets consisting of individ-
ual users). At the same time, none of the temporal “snap-
shots” f-toyfb(t) of our toy OSN exhibits any of the proper-
ties that makes their static counterpart f-toyfb so special.
Clearly, ignoring the temporal dynamic of our toy OSN as
captured by the snapshots f-toyfb(t), t ∈ T , and focusing
instead on the static friendship graph f-toyfb is bound to
produce network characteristics and result in models of the
OSN in question that are of little practical relevance and
are likely to be misleading, if not wrong. But what are ef-
fective and efficient methods for accurately capturing and
systematically characterizing the dynamic nature of large-
scale real-world OSNs?

2.2 How to sample if you must
Being largely measurement-based, OSN research has re-

lied heavily on data obtained from third-part crawlers, specif-
ically designed to exploit OSN-specific features and services
(e.g., open API) to extract user-related information (e.g.,
friend list) that is otherwise only available to the owner of
the OSN. However, we have seen that the capture of, say, the
friend lists of users, regardless of how extensive or complete,
provides only very limited and inaccurate information about
which users are active in the OSN at what time(s). To get
a handle on the actual dynamics of a real-world OSN, any
crawl has to provide some type of timing information that
can be used to infer active users and distinguish them from
users that were active at some point in the past but have
long since moved on to other OSNs. It should be apparent
that crawling our toy OSN toyfb and extracting the timing
information of link de-activations (assuming it is available
and accurate) would enable us to infer the true dynamics of
our toy OSN.

However, crawling a system like Facebook, with an esti-
mated 200 million users (here, a user is identified in terms
of the account she opened when joining Facebook) is not
feasible. A full crawl is prohibitive due to the system’s
size, and any partial crawl requires proof that the obtained
data is representative and not biased. The main sources

for bias include spatial heterogeneity (e.g., highly skewed
node degrees in the inferred friendship graph), temporal dy-
namics or churn (e.g., new users joining the system), and
very limited timing information about user activity. More-
over, OSNs typically limit the number of third-party queries
which adds yet another wrinkle to crawling OSNs for the
purpose of obtaining user-specific data that goes beyond
pure connectivity/friendship information. While the major-
ity of currently available OSN measurements results from
some type of partial crawling, proof that they are represen-
tative and unbiased is unfortunately thoroughly lacking.

Assuming OSNs will continue to treat most user-specific
information as off-limits to third-party crawling activities,
OSN researchers will have to re-think OSN measurement, all
the way from what to measure to how to obtain the desired
measurements. The ultimate objective should be nothing
less than high-quality data in support of a clear understand-
ing and detailed characterization of the structure, dynamics,
and user behavior associated with real-world OSNs. Given
the problems with full or partial crawls, a promising ap-
proach to OSN measurement is sampling [11, 12], but even
its use is far from straightforward. In theory, the goal of
sampling an OSN is to obtain a “representative” sample of
users and their various attributes. However, in view of an
unknown underlying graph structure that is changing over
time, what is meant by a “representative” sample? Even
if the latter is adequately defined, obtaining such a sample
inevitably requires some crawling technique, which in turn
has to be informed by appropriate and up-to-date connectiv-
ity/activity information provided by the users encountered
during the crawl. Given that the friendship graphs that have
been used in the past in this context are inadequate (see the
toy OSN example above), what is the proper (i.e., reliable
and useful) information a crawler should extract from each
encountered user?

2.3 Multi­scale to the rescue?
Given the sheer number of users and possible links in an

OSN of the size of Facebook, the general lack of timing in-
formation needed to distinguish between active and inactive
users, and the overall ambiguity associated with using avail-
able OSN measurements to infer how users interact with one
another over time makes studying real-world OSNs in a rig-
orous and principled manner look like a near impossible task.
Moreover, maybe the kind of OSN research performed to
date is all that can be expected under these circumstances.
Not satisfied with this status-quo, we argue here that more
creative and innovative OSN research efforts should and can
be pursued despite or because of the very challenges listed
above.

We base our optimistic outlook on two key observations.
First, snapshots taken over relatively short periods of time of
inferred friendship or interaction graphs of real-world OSNs
tend to exhibit pronounced clustering at different spatial
scales. Tightly connected nodes in the original graph form
apparent clusters at a coarser granularity, which in turn form
new clusters at a yet coarser level of resolution. Moreover,
graphs with different node or link attributes may cluster
differently at different scales, possibly even with different
overlapping clusters. Second, the temporal dynamics of a
graph structure at a fine (spatial) granularity is typically
faster and more noisy than the dynamics of that graph at
coarser levels of resolution. Together, these two observations



(a) t=1/16 (b) t=2/16 (c) t=3/16 (d) t=4/16

Figure 2: Specification of the dynamics of our toy OSN toyfb at time points t = 1/16, 1/8, 3/16, and 1/4.

(a) Scale 1 (b) Scale 2 (c) Scale 3

Figure 3: Multi-scale representation of the friendship graph f-toyfb associated with the toy OSN toyfb.

suggest a promising novel approach for investigating large-
scale, dynamic, annotated graphs arising in the context of
OSNs: Start at a coarse scale where the graph’s size is small
and its dynamic is slow and use the insight gained at that
scale to study the graph at the next finer levels of resolution.

In effect, we propose here to pursue a full-fledged Multi-
Resolution Analysis (MRA) of large-scale and evolving graph
representations of real-world OSNs, and our method-of-choice
for enabling and developing such an MRA is a recently pro-
posed technique called Diffusion Wavelets (DW) [5, 8, 9].
Diffusion Wavelets provide a mathematical tool for perform-
ing a principled multi-scale analysis of graphs and of func-
tions defined on graphs. They are a natural choice for con-
structing and studying static graphs at different (spatial)
levels of resolution, for separating structure from noise, and
for tracking the evolution of graphs at different (spatial and
temporal) scales, where the (spatially) coarse-scaled coun-
terparts of the original graph can be expected to evolve in
time with different levels of predictability. Instead of track-
ing single users with all their variations in the original graph,
the proposed MRA method enables the systematic tracking
of scale-dependent “soft” clusters identified and constructed
with the help of DW. In short, the DW technique promises
to support an original and practically useful MRA for large-
scale evolving graph structures that reveals the critical, but
possibly different structural features and forces at work at

the different scales in space. Moreover, it enables a system-
atic study of the dynamics of the underlying structure or
their coarse-scale counterparts at different scales in time.

To illustrate the main ideas, consider again the dynamic
toy OSN toyfb and its static counterpart f-toyfb and note
that one of the educational appeal of the HSF graphs is
that applying to them the type of MRA proposed above can
proceed by visual inspection, without the need to explain
the mathematics behind DW. In particular, when viewed
at the finest scale (i.e., scale 1), the HSF(5, 2) graph (see
Figure 3(a)) reveals an obvious cluster-within-cluster struc-
ture that suggests a natural multi-scale representation of the
HSF(5, 2) graph at coarser scales 2 and 3 as given by the
graphs in Figure 3(b) and Figure 3(c), respectively (note
that the coarsest scale 4 can be thought of as consisting of
a single node but is not shown). A key feature of this suc-
cessive coarsening of the HSF(5, 2) graph is that every node
at a coarse scale can be uniquely identified with a subset of
nodes (and corresponding edges) at a finer scale, resulting
in a natural MRA representation of HSF(5, 2) that captures
its visually striking hierarchical structure. The main moti-
vation for relying on the DW technique as our method-of-
choice for a MRA of graphs is that it provides the necessary
mathematical framework for performing the above intuitive
graph coarsening process in a rigorous manner for general
graph structures.



The potential of using an MRA of graphs for studying
dynamic graphs can be seen when comparing Figures 2 and
3. First, at the coarsest (spatial) scale (i.e., scale 3, Fig-
ure 3(c)), the dynamics is indeed the slowest; in fact, at
scale 3, the graph structure as shown in Figure 3(c) is fixed
and does not evolve over time. Moving to the next finer spa-
tial scale (i.e., scale 2, Figure 3(b)), we observe those effects
of the dynamic nature of toyfb that manifest themselves
in how the generic peripheral HSF(5, 0) cells as a whole
(and within their respective HSF(5, 1) cells) connect to the
center node of the HSF(5, 2) graph; how individual users
within those cells connect to one another or to the center
node of their HSF(5, 1) cell remains invisible at this scale.
Also note that while this particular dynamics is no longer
constant, it is slow in the sense that it can be fully recov-
ered by observing it at a coarse temporal scale; that is, at
times t ∈ {0, 1/4, 1/2, 3/4, 1}. Lastly, to recover the full dy-
namics of toyfb down to the level of how the individual
users within each generic HSF(5, 0) cell establish connectiv-
ity within their cell or with their center of their HSF(5, 1)
cell, we have to bring in the finest spatial scale (i.e., scale 1)
as well as the finest temporal scale (i.e., t ∈ T ).

Despite being at best a simple caricature of how real-
world OSNs evolve in time, our toy OSN example has suf-
ficiently rich structure and dynamics to illuminate how an
approach to understanding evolving graphs based on a pur-
poseful multi-scale decomposition may work for more gen-
eral dynamic graphs. One attractive feature of such a de-
composition is that it associates the different components
of the overall dynamics with the different graph representa-
tions at the different spatial and temporal scales. Another
appealing property that is highlighted by this example is
that the approach can tolerate different amounts of noise or
measurement errors in precisely how the nodes at the differ-
ent spatial scales establish links between them – the coarser
the scale, the larger the noise or measurement errors that
can be tolerated.

3. CONCLUSION AND OUTLOOK
Past research involving measurement, analysis, character-

ization, and modeling of OSNs has largely ignored the fact
that OSNs are highly dynamic systems. To rectify this fail-
ure, we argue in this position paper that future OSN re-
search will have to do away with much of what are presently
considered to be standard and commonly-accepted measure-
ment, modeling, analysis, and validation approaches. It will
have to replace them by new methods that can account
for the full-fledged dynamic features exhibited by real-world
OSNs and we have listed some initial attempts. For exam-
ple, while there has been some initial progress using sam-
pling to measure heterogeneous and dynamic graph struc-
tures [11, 12], the largely unknown nature of the dynamics
and churn of real-world OSNs remains a serious obstacle to-
wards extracting truly informative measurements from to-
day’s OSNs. However, without overcoming this problem, fu-
ture measurement-driven OSN studies will continue to lack
the solid foundation necessary for providing an in-depth un-
derstanding of OSNs that is grounded in high-quality mea-
surements. In terms of their analysis, we have illustrated
with a simple toy example why a mathematically sound
MRA methodology for large-scale dynamic graph structures
would represent significant progress towards a principled
treatment of real-world OSNs (including the detection and

identification of different communities-of-interest or the pre-
diction of link or node attributes in missing data scenarios).

In addition to the intra-OSN dynamics (generated, for ex-
ample, by users joining and leaving one and the same OSN),
there also exists empirical evidence of users migrating from
one OSN to another in significant numbers. What are the
features of OSNs that attract masses of new users and cause
the simultaneous demise of other OSNs? The present-day
OSN eco-system provides a unique opportunity to observe,
study, and analyze the rise and fall of real-world OSNs and
try to identify the main forces responsible for the observed
inter-OSN churn. However, the current OSN research pays
hardly any attention to this phenomenon, even though it is
ultimately the most important in practice – what are the
trademarks of OSNs that attract most users? Is it their
architecture or system design, their ability to provide su-
perb end-user performance, their innovative spirit that en-
sures the support and actively fosters the development of
new applications and services, their genuine concern for and
cutting-edge approaches to issues of user privacy and con-
tent protection, etc.? In contrast to current OSN research
that has no answers to these questions, future OSN research
will ultimately be judged by its very (in)ability to provide
correct answers to these and related questions.

4. REFERENCES

[1] facebook.com/note.php?note id=30695603919, Oct. 2008.

[2] venturebeat.com/2008/05/09/facebook-borrows-100m-to-
build-out-its-infrastructure/, May 2008.

[3] Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong.
Analysis of topological characteristics of huge online social
networking services. Proc. WWW’07, 2007.

[4] A.-L. Barabasi, Z. Dezso, E. Ravasz, S.-H. Yook, and Z.
Oltavi. Scale-free and hierarchical structures in complex
networks. Seventh Granada Lectures, Spain, 2002.

[5] R. R. Coifman and M. Maggioni. Diffusion wavelets. Appl.
Comp. Harm. Anal., Vol. 21, pp. 53–94, 2006.

[6] B. Krishnamurthy. A measure of online social networks.
Proc. of COMSNETS’09, 2009.

[7] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over
time: Densification laws, shrinking diameters and possible
explanations. KDD, Chicago, IL, 2005.

[8] M. Maggioni, J. C. Bremer Jr., R. R. Coifman, and A. D.
Szlam. Biorthogonal diffusion wavelets for multiscale
representations on manifolds and graphs. Proc. SPIE
Wavelet XI, Vol. 5914, 2004.

[9] M. Maggioni, A. D. Szlam, R. R. Coifman, and J. C.
Bremer Jr. Diffusion-driven multiscale analysis on
manifolds and graphs: Top-down and bottom-up
constructions. Proc. SPIE Wavelet XI, Vol. 5914, 2004.

[10] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Growth of the Flickr social network.
Proc. ACM/SIGCOMM Workshop on Online Social
Networks (WOSN’08), 2008.

[11] A. Rasti, M. Torkjazi, R. Rejaie, N, Duffield, W. Willinger,
and D. Stutzbach. Graph sampling techniques for studying
unstructured overlays. Proc. IEEE INFOCOM’09
Mini-Conference, 2009.

[12] D. Stutzbach, R. Rejaie, N. Duffield, S.Sen, and W.
Willinger. On unbiased sampling for unstructured
peer-to-peer networks. IEEE/ACM Trans. on Networking,
to appear, 2009.


