
Empirical Evaluation of Power Saving Policies for Data Centers

Michele Mazzucco
University of Tartu

Estonia

Isi Mitrani
Newcastle University

United Kingdom

Abstract

It has been suggested that the conflicting objectives of high perfor-
mance and low power consumption in a service center can be met
by powering a block of servers on and off, in response to chang-
ing demand conditions. To test that proposition, a dynamic oper-
ating policy is evaluated in a real-life setting, using the Amazon
EC2 cloud platform. The application running on the cluster is a
replica of the English edition of Wikipedia, with different streams
of requests generated by reading traces from a file and by means
of random numbers with a given mean and squared coefficient of
variation. The system costs achieved by an ‘optimized’ version of
the policy are compared to those of a simple heuristic and also to
a baseline policy consisting of keeping all servers powered on all
the time and one where servers are re-allocated periodically but re-
serves are not employed.

1 Introduction

Large scale service centers containing hundreds or thousands
of computers are no longer a novelty. Their development and
widespread use has raised considerable interest in the problem of
reducing the amount of power they consume, while at the same
time maintaining a satisfactory level of performance (e.g., response
time). While different techniques aiming at saving energy exist,
with currently available technology the only realistic way to reduce
significantly the power consumption of a server farm is to power
down blocks of servers whenever that can be justified by the de-
mand conditions, hence increasing the system utilization; power
capping decreases the power consumption by slowing down the
servers, but it does not increase the system utilization, while re-
cent developments in processor and memory technology limit the
potential energy savings resulting from DVFS [8].
While there have been proposals for operating policies that work in
exactly the way described above, those proposals have been evalu-
ated by means of numerical models and/or simulations only; how-
ever, they have not been put to the test in a real-life service center.
That is the purpose of the present study. The particular policy we
examine is one where a subset of the available servers are left pow-
ered up all the time, while the rest are designated as ‘reserves’ and
are powered up and down dynamically, depending on the number
of jobs in the system. There are heuristic rules for deciding how big
should be the reserve block, and when it should be activated and
deactivated. The objective function that the policy attempts to min-
imize is a linear combination of the cost of the powered-up servers
and the cost of holding jobs in the system. The policy was im-
plemented on a cluster of computers using the Amazon EC2 cloud
platform and running a replica of the English edition of Wikipedia.
The system was subjected to a traffic of requests whose characteris-

tics were varied. The behavior of the heuristic dynamic policy was
compared to the ‘default’ policy of keeping all servers powered on
all the time, to a policy that changes the number of running servers
according to the predicted user demand but never uses the reserve
block, and also to a policy where a greater effort had gone into op-
timizing the parameters.
A number of server allocation policies taking into account costs
and benefits were proposed by Chase et al [4] and Mazzucco and
Dyachuk [9]. The possibility of powering down a portion of the net-
work infrastructure was studied by Bolla et al [3], while Urgaonkar
et al [15, 18] proposed policies for provisioning multi-tiered appli-
cations. All the above approaches, however, are dynamic only in
the sense of reacting to changes in (observed or predicted) user de-
mand; they do not react to changes in the system state (e.g., queue
size).
The ‘reserve block’ policy which is the subject of this paper was
proposed and analysed by means of a queueing model in Mi-
trani [11]. A simpler model of that policy was subsequently ex-
amined by Schwarz et al [12]. Other, more distantly related studies
were carried out by Artalejo et al, [1], Ghandi et al [5] and Slegers
et al [13]. In [1], servers are powered up and down one at a time,
and at most one server can be in the process of being powered up.
This last restriction was relaxed in [5], via an approximate analysis,
while [13] considered the problem of controlling power consump-
tion in the presence of on/off arrival streams by means of Monte
Carlo simulations.
Peripherally related to these dynamic policies are approaches based
on control theory or virtual machine placement (e.g., see Bobroff et
al [2], Verma et al [17] and Kumar et al [7]). Such algorithms are
very difficult to optimize in realistic scenarios and may require user
intervention (e.g., in [7]).
The rest of this manuscript is structured as follows. The following
section introduces the model and the heuristic policy. Section 3 de-
scribes the setup employed to test our proposal. Section 4 discusses
a number of experiments, while Section 5 concludes the paper.

2 The policy

Suppose that the total number of available servers is N. A subset of
them, of size n, is designated as ‘the main block’; those servers are
left powered on all the time, regardless of whether they are busy or
idle. The remaining (N− n) servers form the ‘reserve block’. The
latter is powered on and off dynamically. More precisely, there is
an upper threshold U , such that when the number of jobs (requests)
in the system increases from U to (U + 1), all the servers in the
reserve block are powered on. Similarly, there is a lower threshold
D, such that when the number of jobs in the system decreases from
D to (D−1), all the servers in the reserve block are powered off. Of
course, in practice those operations are not instantaneous but take

some time during which the reserve servers consume power without
being able to serve jobs.
The system performance is measured by the steady state average
number of jobs inside the system (i.e., waiting or being served),
or, equivalently, by the average response time. Hence, the policy
parameters n, U and D should be chosen so as to minimize, as far
as possible, a cost function of the form

C = c1L+ c2S , (1)

where L is the average number of jobs in the system and S is the av-
erage number of powered on servers; c1 is the cost of holding one
job in the system per second and c2 is the running cost for one server
per second (please note that determining the value of c1 and c2 is
outside the scope of this paper). Different cost functions are also
possible, e.g., one might want to acknowledge the fact that servers
executing jobs usually require more energy than idle servers [9].
The queueing model in [11] assumed that if a reserve server was
serving a job when the policy decided to power it off, that job
would be interrupted and returned to the queue, to be resumed on
another available server. In real life, the job would be allowed to
complete before the server was powered off. The model also made
Markovian assumptions concerning the arrival, service and power-
on processes (power-off was assumed to be instantaneous). Based
on those assumptions and the resulting analysis, certain heuristics
were proposed for choosing the size of the main block, n, and the
two thresholds, U and D. In reality the assumptions are unlikely to
be satisfied, and the parameters (e.g., the arrival rate) are not known
with absolute accuracy, but the heuristics can still be used. The
particular values that are employed in our experiments are

n =

⌊
ρ+

1
2

[
1+
√

1+4ρ
c1

c2

]⌋
; U = N ; D = n−1 , (2)

where ρ = λb is the offered load; λ is the job arrival rate, b is the
average service time, and N is the number of available servers. The
operation b·c is a truncation, while the second term of the equation
used to determine n represents the ‘safety capacity’ used to deal
with stochastic variability. While a number of heuristics aiming
at deciding the amount of variability edge exist (e.g., see [9]), our
strategy relies on approximating the factor L in Equation (1) by the
M/M/1 expression, see [11].
The rationale behind this policy is to allocate enough servers to cope
with the average load, and to make a reasonable choice for what the
value of the two thresholds is concerned: the reserves are powered
up when the number of jobs in the system exceeds N, while they
are powered down when some of the non-reserves become idle. As
shown in Figure 1, for a certain value of n, a region where the cost
is low for a number of combinations of D and U always exists.
N.B. Even though in this study we optimize all the parameters, the
above observation implies that this policy is particularly suitable for
scenarios where the main and reserve blocks are fixed (e.g., con-
tainer based data centers) and one should decide when to power
on/off the reserve block.
In addition to the ‘Heuristic’ policy above, an ‘Optimal’ policy was
implemented, whereby the parameters were obtained by a simulated
annealing algorithm searching through the possible values of n, U
and D, evaluating the model and selecting the best. Of course, that
policy is only optimal if the Markovian assumptions are satisfied.
Otherwise, as we shall see, even the default policy can be better.
In order to apply either the ‘Heuristic’ or the ‘Optimal’ policy, the
parameters λ and b need to be estimated. To that end, the system
is monitored and traffic statistics are collected. The observation pe-
riod is divided into intervals of fixed size: the arrival rate obtained

during one such interval (or a transformation of that value, e.g., if
a prediction algorithm is employed) is used to determine the pol-
icy during the next interval. The average service time (or, rather,
its reciprocal, the average service rate µ = 1/b jobs/sec), instead,
is assumed to be fixed and known. Concerning the experiments
which will be discussed later, the average service time was deter-
mined a priori by estimating the average response time of an over-
provisioned system. The obtained value was validated by estimat-
ing the average number of jobs inside the system and then employ-
ing Little’s law to determine the average response time. Since no
queueing delay occurs when the system is over-provisioned, the re-
sponse time is equal to the service time. With regard to this point, it
is worth noting that Amazon EC2 instances have two IP addresses.
The network delay is negligible only if the internal IP address is
employed, as public IP address network traffic goes through many
routers/hops.
Finally, while the model assumes a system composed of a single
tier only, this assumption is lifted during experiments.
N.B. The policy described in Equation (2) assumes that the average
offered load is less than n. As we shall see in Section 4.3, this has
important implications if the load can not be estimated with abso-
lute accuracy.

 0
 10

 20
 30

 40
 50 0

 10

 20

 30

 40

 50
 40

 45

 50

 55

 60

D

U

 42
 44
 46
 48
 50
 52
 54
 56
 58

(a) n = 18

 0
 10

 20
 30

 40
 50 0

 10

 20

 30

 40

 50
 40

 45

 50

 55

D

U

 40

 42

 44

 46

 48

 50

 52

 54

(b) n = 29

Figure 1: Cost for different values of U and D. λ = 70. The config-
uration achieving the lowest possible cost, 40.687 $/sec, is n = 20,
D = 22, U = 45.

3 Experimental Setup

Rather than employing benchmark applications such as those pro-
posed by SPEC or TPC, we decided to test our policies on a replica
of the English edition of Wikipedia, which constitutes about half of
the requests received by Wikipedia [14] deployed on the Amazon
Elastic EC2 cloud compute platform.
All nodes are deployed on c1.medium instances running Ubuntu
Linux 11.04 32 bits with kernel 2.6.38. Our setup consists of one
virtual machine running HAProxy 1.4.20 to distribute incoming re-
quests to a variable number of Apache 2.2.17 servers running the
MediaWiki application. On the same node we also run a Python
daemon that connects to HAProxy via UNIX socket; it collects
statistics and updates the size of the reserves block as well as its
state in order to reflect changes in user demand. Since we are em-
ploying Amazon EC2 instances and not bare-metal servers, reserves
are always on, but they are enabled/disabled at runtime by chang-
ing the configuration of HAProxy. Persistent storage is provided by
one MySQL 5.1.54, while another machine runs Memcached 1.4.5,
a memory caching system used to speed up the application.
Main optimizations We have set the socket timeout to 20 seconds
on both the load balancer and client with the aim of preventing sit-
uations where a long request causes a timeout while it is being ex-
ecuted. Also, since we are serving dynamic content only (static
content is not an issue – in one test we were able to serve about 0.5
Gbit/sec of static content with just four servers [10]), the workload
is rather CPU intensive (PHP caching is disabled); hence, we have

set the maximum number of concurrent connections to each web
servers to two. This prevents overloading the web servers, as we
have found that two connections suffice to keep the average CPU
utilization at about 70%. One might be able to increase the through-
put slightly by allowing more concurrent jobs to be served by each
Apache server at the expense of very unpredictable response times.
Hence, we treat each virtual machine as two servers. Since servers
become available and are powered off as a whole, in case an odd
value of n is chosen, Equation (1) is evaluated for both (n−1) and
(n+ 1) (with the corresponding ‘best’ thresholds) and the solution
providing the lowest cost is selected.
Dataset The database was initialized with the MediaWiki page
dumps of January 15, 2011, consisting of 166,977 articles. These
correspond to about 2.8 GB of filesystem space. The operational
dataset, however, is composed of about 40,000 articles (excluding
the redirects), as we are requesting only a portion of randomly se-
lected articles in order to ensure that most of the requests can be
served from the cache (about 75% of the queries are cached by
MySQL while the cache hit ratio of memcached is 97%). Using
the whole dump would require us to use a distributed deployment
for memcached, without introducing any substantial difference.
The reader should keep in mind that adding an additional layer pro-
viding a caching abstraction complicates the setup considerably, as
jobs might be served entirely from the cache (at least one database
access is required even in case of cache hit), entirely from the
database, or a mix of the two previous options. The average size
of each request is about 59 KB, the average service time is 230 ms,
while the squared coefficient of variation of service times is about
0.5 (disabling PHP caching increases the jobs size while at the same
time it considerably decreases the service time variability).
Load Generator The load was generated by a customized version
of WikiBench [16] running on OpenJDK 1.7; the main difference
compared to the original version is that our workload generator uses
an open system model (i.e., new job arrivals arrive independently
of job completions), which is implemented by means of non block-
ing I/O. URLs were selected at random by means of an uniform
distribution, while interarrival intervals were generated using expo-
nential or lognormal distributions with a given mean and squared
coefficient of variation. In order to reduce the network delays all
the machines, including the load generator, were deployed on the
same availability zone.

4 Experimental Evaluation

In this section we present the results of a number of experiments
that were carried out in order to evaluate the performance of our
power-saving policies.
As mentioned in Section 2, determining suitable values for c1 and
c2 is outside the scope of the paper. However, it is worth noting
that they affect the choice of n (and consequently the value of of
D, see Equation (2)). In particular, the size of the always-on block
increases as the ratio c1/c2 increases.
When not specified otherwise, the following parameters are em-
ployed: c1 is 1.2 $/sec, c2 is 1 $/sec, the average service rate is 4.35
jobs/sec, 34 CPUs (i.e., the saturation point occurs at 34× 4.35 =
147.9 jobs/sec), and the average power-up delay is 60 seconds. Be-
fore embarking on the real-life trials, we evaluated the model in [11]
numerically, under Markovian assumptions, so as to examine the
extent to which the achievable costs are affected by the ratio be-
tween c2 and c1. In order to do that, the holding cost is fixed at
c1 = 1 $/sec and the cost of running a server, c2, is varied in the
interval 0.04, . . . ,25 $/sec. The total number of servers is 40 and
the arrival rate is 70 jobs/sec, corresponding to an offered load of
about 16.

 0

 200

 400

 600

 800

 1000

 0.1 1 10

C
o

st
 [

$
/s

ec
]

c1/c2 [log]

Optimal
Heuristic

Always On

Figure 2: Cost for different values of c2. c1 = 1.0, N = 40, λ = 70.

As one might expect, the difference between static and dynamic
policies becomes smaller and smaller as the c1/c2 ratio increases:
Figure 2 clearly shows that when the cost of running servers be-
comes negligible, the default policy is as good as the optimal one.
Conversely, when c2� c1 it becomes very important to choose the
right number of servers to run as well as when to power the reserves
on and off. For example, when c1/c2 = 0.04, the optimal cost is
about 455 $/sec, the cost of the default policy is over 1,016 $/sec,
while that of the heuristic is 532 $/sec.
The following results are obtained from real-life experiments.

4.1 Non-bursty traffic

We evaluate the effectiveness of the dynamic allocation schemes on
the Amazon EC2 cloud. For comparison reasons, the performance
of the default policy which runs all the serves all the time is also
displayed. We vary the load between approximately 20% and 80%
by increasing the arrival rate from 29 to 118 jobs/sec. The interar-
rival intervals are exponentially distributed, i.e., the input stream is
Poisson. Each point in the figures below represent one run lasting
one hour. During each run, roughly 115,000 (low load) to 400,000
jobs (high load) enter the system. These correspond to about 16 and
62 Mbits of traffic respectively being handled by the load balancer
every second. Samples of the cost are collected every six minutes;
they are used at the end of each run to compute the corresponding
95% confidence interval, which is calculated using the Sutdent’s t-
distribution.
The most notable feature of the graph plotted in Figure 3a is that
the ‘Heuristic’ policy is practically indistinguishable from the more
computationally intensive ‘Optimal’ under light load (< 40%).
Above that point the two differ, however the corresponding points
are within each other’s confidence intervals. The reason for that
lies in the fact that the ‘Heuristic’ algorithm choses the parameters
in a more conservative manner, hence over-provisioning the sys-
tem in a larger measure compared to the ‘Optimal’ policy, while
the two thresholds governing the reserve block are also smaller. As
one might expect, as the load increases the difference between the
dynamic policies and the ‘Always On’ approach becomes smaller
and smaller. In fact, the results show that when c1 is similar to c2,
employing a dynamic allocation scheme is advantageous only for
loading conditions not exceeding 60–65%. Beyond that point the
performance of the dynamic schemes worsens considerably, while
the confidence intervals get much wider. It is perhaps worth noting
that while running these experiments we have noticed that the cost
function (1) is relatively robust with respect to the value of D and U
– see also Figure 1 – but it is very sensitive with respect to λ. Due
to the fact that the reserve block is powered on and off all the time,
when the system is heavily loaded (> 75%) even a relatively small
under-estimation of the arrival rate (∼ 2%) has a significant effect

 20

 40

 60

 80

 100

 120

 140

 30 40 50 60 70 80 90 100 110 120

C
o
st

 [
$
/s

ec
]

λ [jobs/sec]

Heuristic
Always On

Optimal

(a) ca2 = 1

 16

 34

 0 500 1000 1500 2000 2500 3000 3500

S
er

v
er

s

Time [sec]

Reserves not used Reserves powered up

Reserves available

Consuming power
Running jobs

 15

 40

 65

 90

 115

 140

N
o
.
o
f

jo
b
s

[L
]

D U

(b) ‘Heuristic’ policy, λ = 51

 20

 40

 60

 80

 100

 120

 140

 30 40 50 60 70 80 90 100 110 120

C
o
st

 [
$
/s

ec
]

λ [jobs/sec]

Heuristic
Always On

Optimal

(c) ca2 = 4

Figure 3: Comparison between different policies: (a) Markovian traffic, (b) number of jobs in the system (top) and number of servers (bottom):
heuristic policy, λ = 51, ca2 = 1, n = 16, D = 15, U = 34, and (c) Lognormally distributed interarrival intervals, ca2 = 4.

on the cost.
Figure 3b compares the number of jobs inside the system and the
number of running servers, for the scenario where λ = 51 jobs/sec.
As one can see, when a big burst of arrivals occurs, the reserves
are powered on. In some circumstances (e.g., first burst in the fig-
ure) they do not handle the extra load sufficiently quickly due to
the power-up delay, and thus they are powered off as soon as they
become available. In other circumstances, instead, they are used to
deal with the unexpected load. Regarding this point, when reserves
become available, they are used for a few seconds only, as the N
servers deal with the backlog very quickly (the size of the queue
will decrease at rate Nµ− λ). However if the load is extremely
bursty it can be better to use the default policy which does not em-
ploy reserves, as it eliminates the unproductive power-up delays.

4.2 Bursty traffic

In the next experiments, the arrival process is no longer Poisson.
The average arrival rate is kept the same as before, however now
interarrival intervals are generated according to a Lognormal distri-
bution.
One would expect that an increase in the interarrival time variability
would increase the cost. Figure 3c, which illustrates the case where
the squared coefficient of variation of the interarrival intervals is
ca2 = 4, shows that the reserve block model deals well with traf-
fic bursts only for average loading conditions not exceeding 40%
(the cost is the same as that of the Markovian scenario, see Fig-
ure 3a). If the load exceeds that threshold, however, it becomes
better to employ the default policy, as the unproductive power-up
delays increase the cost considerably. Also, the policy solving the
queueing model performs worse than the ‘Heuristic’ algorithm due
to the assumptions being violated (i.e., the optimal solution is no
longer optimal).

4.3 Time varying traffic

In real world scenarios the chances that service providers would
have to deal with stationary traffic are extremely rare, while param-
eters are usually predicted and/or estimated at runtime because they
are not known in advance. Hence, in the last experiment we study
the case of time varying user demand. In oder to do so, we employ
the trace of day 10 of the ClarkNet workload1. As far as the user
demand forecasting is concerned, instead, we employ two differ-

1http://ita.ee.lbl.gov/html/contrib/
ClarkNet-HTTP.html

 10

 100

 1000

 0 5 10 15 20

Time [hour]

MAM + Static

 10

 100

 1000
N

u
m

b
er

 o
f

jo
b

s
[L

] MAM + Heuristic

 10

 100

 1000

Oracle + Heuristic

Figure 4: Number of jobs inside the system, L, for different poli-
cies. Every point represents the maximum value over a 5 seconds
interval.

ent predictors, an ‘Oracle’ which has complete knowledge of the
user demand, and a modified Holt-Winters’ algorithm with mul-
tiplicative effects for both seasonal and error components, specif-
ically the ETS(M,A,M) algorithm [6] as implemented by the R
command ets(ts, model="MAM", damped=F). Hence, we con-
trast three settings: ‘Oracle’ predictor paired with the ‘Heuristic’
policy, ‘MAM’ predictor paired with the ‘Heuristic’ policy, and
‘MAM’ predictor paired with a ‘Static’ policy, i.e., a policy that
runs the same amount of always on servers as the ‘Heuristic’ but
does not employ the reserve block.
As shown in Figure 5a, the forecaster makes mistakes (e.g., see
hours 1–3) which have a negative impact on the cost. In particular,
forecasting errors might cause overload situations, while our model
requires the system to be stable. In order to avoid situations where
the queue grows unbound HAProxy discards jobs that have been
waiting for 30 seconds in the queue; nevertheless, the maximum
queue size still grows to more than 1,000, see Figure 4.
Regarding the arrival rate, we use a Lognormal distribution where
the mean value changes every hour in order to reflect the shape of
the Clarknet traces, while the squared coefficient of variation is al-

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20

R
u
n
n
in

g
 s

er
v
er

s

Time [hour]

MAM
Oracle

 100

 0 5 10 15 20

C
u
m

u
la

ti
v
e

av
g
.
co

st
 [

$
/s

ec
]

Time [hour]

MAM + Static
Oracle + Heuristic
MAM + Heuristic

 10

 100

 1000

 0 5 10 15 20

C
o
st

 [
$
/s

ec
]

Time [hour]

Spike due to forecast error

Spike due to a problem in Amazon EC2

MAM + Static
Oracle + Heuristic
MAM + Heuristic

Figure 5: (a) Number of ‘always on’ servers, (b) cumulative average cost for different policies, and (c) cost per second for different policies.
Data is collected with 1 second accuracy and lines are smoothed using a cubic polynomial.

ways equal to 4. The parameters governing the policies are also
updated every hour. According to the logs collected by HAProxy
during the 24 hours period, about 380 GB of data were served, cor-
responding to about 4.5 million jobs (the overall arrival rate is about
72 jobs/sec).
The most noticeable result is that forecasting errors are responsible
for about a 45% increase in the cumulative average cost, see Fig-
ure 5b (58 $/sec versus 84 $/sec). In spite of prediction errors, how-
ever, employing the ‘Heuristic’ algorithm causes a large reduction
in the cost compared to the case where no reserves are employed
(84 $/sec versus 160 $/sec). This is due to the fact that, from an
economic point of view, powering on/off the reserves very often is
still more advantageous than leaving the jobs into the queue, see
Figure 5c. That applies also to the case where the system is under-
provisioned due to forecasting errors, see hours 2–4 in Figure 5c.
Also, please note that idle periods occur even when the system is
under-provisioned, see Figure 4. At the same time, Figure 4 also
shows that due to the bursty traffic the ‘Oracle’ forecaster can not
prevent temporary overload situations.

5 Conclusions

We have tested a dynamic power-saving policy using a main block
of servers and a block of reserves both numerically and in a real-
life setting. It has been shown that in normal operating conditions,
when the arrival process is not excessively bursty, that policy can
achieve significantly lower costs than the default policy where all
servers are powered on all the time. Moreover, a simple and easily
implementable heuristic produces results that are very close to, and
sometimes better than those provided by an algorithm solving the
corresponding queueing model. Only when the arrival process be-
comes extremely bursty or the load exceeds 60–65% is it better to
employ the default policy.
When the number of always on servers can not deal with the av-
erage load, jobs experience large waiting times due to power up
delays, while reserves are powered up and down very often. Hence,
when the load is non-stationary, forecasting errors can have a huge
impact on the performance of the system. In spite of that, however,
our experiments have shown that the reserve-block model performs
better that an algorithm that does not employ reserves to deal with
temporary traffic spikes. As discussed, the load balancer employed
a timeout in order to avoid situations where the queue grows un-
bound. Hence, a natural extension of the proposed model includes
explicitly accounting for users’ [im]patience. Another possible ex-
tension include considering multiple blocks of reserves, where each
block is powered up and down at different thresholds. Finally, since
the number of always-on servers plays a crucial role in determining
the performance of our proposal, we plan to investigate allocation

heuristics capable of better dealing with forecasting errors.

Acknowledgements

This work was partly funded by ERDF via the Estonian Com-
petence Centre Programme, by the European Commission via
the REMICS project (FP7-257793), and by the EU Cost Action
IC0804.

6 References
[1] ARTALEJO, J. R., ECONOMOU, A., AND LOPEZ-HERRERO, M. J. Analysis of

a multiserver queue with setup times. Queueing Syst. Theory Appl. 51, 1-2 (Oct.
2005), 53–76.

[2] BOBROFF, N., KOCHUT, A., AND BEATY, K. Dynamic placement of virtual
machines for managing sla violations. In IM ’07 (May 2007), IEEE, pp. 119
–128.

[3] BOLLA, R., BRUSCHI, R., CIANFRANI, A., AND LISTANTI, M. Enabling
backbone networks to sleep. Network, IEEE 25, 2 (march-april 2011), 26 –31.

[4] CHASE, J. S., ANDERSON, D. C., THAKAR, P. N., VAHDAT, A. M., AND
DOYLE, R. P. Managing energy and server resources in hosting centers. ACM
SIGOPS Operating Systems Review 35, 5 (2001), 103–116.

[5] GANDHI, A., GUPTA, V., HARCHOL-BALTER, M., AND KOZUCH, M. Opti-
mality Analysis of Energy-Performance Trade-off for Server Farm Management.
In Performance (November 2010).

[6] HYNDMAN, R., KOEHLER, A., ORD, J., AND SNYDER, R. Forecasting with
Exponential Smoothing – The State Space Approach. Springer, 2008.

[7] KUMAR, S., TALWAR, V., KUMAR, V., RANGANATHAN, P., AND SCHWAN,
K. vManage: loosely coupled platform and virtualization management in data
centers. In ICAC ’09 (2009), ACM, pp. 127–136.

[8] LE SUEUR, E., AND HEISER, G. Dynamic Voltage and Frequency Scaling: the
Laws of Diminishing Returns. In HotPower’10 (2010), USENIX Association.

[9] MAZZUCCO, M., AND DYACHUK, D. Optimizing cloud providers revenues
via energy efficient server allocation. Sustainable Computing: Informatics and
Systems 2, 1 (2012), 1 – 12.

[10] MAZZUCCO, M., VASAR, M., AND DUMAS, M. Squeezing out the Cloud via
Profit-Maximizing Resource Allocation Policies. In MASCOTS 2012 (August
2012), IEEE.

[11] MITRANI, I. Managing performance and power consumption in a server farm.
Annals of Operations Research (2011).

[12] SCHWARTZ, C., PRIES, R., AND TRAN-GIA, P. A queuing analysis of an
energy-saving mechanism in data centers. In ICOIN 2012 (February 2012),
pp. 70–75.

[13] SLEGERS, J., THOMAS, N., AND MITRANI, I. Dynamic server allocation for
power and performance. In SIPEW ’08 (2008), Springer-Verlag, pp. 247–261.

[14] URDANETA, G., PIERRE, G., AND VAN STEEN, M. Wikipedia workload anal-
ysis for decentralized hosting. Computer Networks 53, 11 (2009), 1830–1845.

[15] URGAONKAR, B., SHENOY, P., CHANDRA, A., GOYAL, P., AND WOOD, T.
Agile dynamic provisioning of multi-tier internet applications. ACM Trans. Au-
ton. Adapt. Syst. 3, 1 (Mar. 2008), 1:1–1:39.

[16] VAN BAAREN, E.-J. Wikibench: A distributed, wikipedia based web application
benchmark. Master’s thesis, VU University Amsterdam, May 2009.

[17] VERMA, A., KUMAR, G., AND KOLLER, R. The cost of reconfiguration in a
cloud. In Middleware (2010), ACM, pp. 11–16.

[18] ZHANG, Q., CHERKASOVA, L., MI, N., AND SMIRNI, E. A regression-based
analytic model for capacity planning of multi-tier applications. Cluster Comput-
ing 11, 3 (Sept. 2008), 197–211.

