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Solar Energy is Rapidly Expanding

•  Installed cost of solar continues to drop
-  Cost fell by 50% from 2008 to 2013
-  Led to 418% increase in solar capacity

•  Many implications to this rising solar penetration
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Implications of Solar to Grid

•  Utilities must actively control generation to balance grid
-  Individual homes exhibit highly stochastic demand profiles
-  However, aggregate demand profiles are smooth and highly predictable

-  Enables utilities to plan generator  “dispatch” schedules in advance 
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Implications of Solar to Grid

•  Large-scale solar penetration fundamentally alters this paradigm
-  Increases stochasticity of demand profiles, even when aggregated
-  Solar output can change instantly, while generators take time to “ramp up”
-  Complicates controlling generation to balance supply and demand

‣  May require more energy storage, spinning reserve, or demand response capacity 

•  Accurate solar monitoring and forecasting is critical
-  Track solar penetration rates over time
-  Monitor real-time fluctuations in grid solar production 
-  Inform advanced planning of generator dispatch schedules
-  Identify faults and anomalies in solar output
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Prior Work 

•  Possible to develop highly accurate models of solar performance
-  Leverages detailed information on site characteristics

Figure from PV Performance Modeling Collaborative

•  However, detailed information not always available
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Black-box Solar Analytics

•  Assumes only access to solar energy data time-series
-  Without any detailed metadata

•  Motivating Scenarios
-  Utilities managing grid with thousands of small-scale solar sites 

‣  Might know location, but not deployment details

-  Third-party energy analytics companies
‣  Often do not know location, or deployment details

-  Researchers accessing public datasets
‣  Metadata is often scarce and unreliable

•  Problem – detailed information not always available
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This Talk – Discuss Two Black-box Techniques

•  1. Solar Disaggregation
-  Turns out utilities often do not even have access to solar data
-  Residential “grid-tied” solar almost always “behind the meter”

‣  Only directly monitor the net of consumption and generation

-  Prevents wide-range of learning-based data analytics
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This Talk – Discuss Two Black-box Techniques

•  2. Solar Localization
-  Determine location from “anonymous” solar energy data
-  Both a privacy threat and/or a potentially useful tool 

‣  Location is highly useful contextual information when analyzing energy data
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SunDance - Solar Disaggregation

•  Given meter location, separate “net” meter data into solar 
generation and consumption at each time t
-  Pnet(t) = Ps(t) + Pc(t), where Pc(t) > 0, Ps(t) < 0, ∨ t > 0

•  Challenges 
-  1. Do not have access to already-separated historical data 
-  2. Cannot individually model solar generation or energy consumption
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Dong Chen — UMass Amherst SunDance

SunDance

•  To address this problem
-  SunDance, that accurately separates (or “disaggregates”) a building’s net 

meter data into its solar generation and energy consumption.
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SunDance Design Overview

•  1. Build a custom model of maximum solar generation
-  Find “best” fitting valid solar curve to the data using a small amount of data
-  Can find accurately even on noisy net meter data

•  2. Build a general model of weather’s effect on irradiance
-  Train model that maps weather metrics to fraction of clear sky irradiance
-  Use to infer fraction of clear sky irradiance at site based on weather
-  Can train model using data from any solar sites where it is available

•  3. Apply two models to disaggregate solar 
-  Solar generation Ps(t) =  Product of (1) and (2) at every time t
-  Energy consumption Pc(t) = Pnet(t) – Ps(t) 
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Apply Physical Solar Performance Model

•  Use clear sky model to compute maximum irradiance
•  Search for size, efficiency, tilt, and orientation that yields the 

tightest upper bound on the data

•  Apply linear temperature adjustment to data
-  Find linear constant c (~0.4%/C) that yields the tightest upper bound

•  Generation always strictly less than clear sky irradiance
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•  Issues with modeling  “noisy” net energy meter data
-  Power Consumption Floor – do not know zero point of solar


-  SunDance estimates based on minimum power consumption at night, 

where solar power is known to be zero, to adjust the model

-4
-2
 0
 2
 4
 6
 8

 10
 12

12am 3am 6am 9am 12pm 3pm 6pm 9pm

Po
w

er
 (k

W
)

Time (Hours)

Net Meter Data
Ground Truth

Power Floor

Modeling Net Meter Data

13

power floor



David Irwin — UMass Amherst Staring at the Sun

Modeling Net Meter Data

•  Issues with modeling  “noisy” net energy meter data
-  Consumption “Noise” – reduces solar generation like weather


-  SunDance robust as long as at least one datapoint exists where solar 

generation is near its maximum potential and energy consumption is low
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•  Issues with modeling  “noisy” net energy meter data
-  Consumption “Noise” – reduces solar generation like weather


-  SunDance robust as long as at least one datapoint exists where solar 

generation is near its maximum potential and energy consumption is low

Modeling Net Meter Data
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best fit model
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•  Can build highly accurate and custom maximum generation 
models with a minimal amount of net meter data
-  In the limit, we only need the “right” two datapoints

‣  Solar generation is near maximum, energy consumption is near minimum
‣  There is a significant temperature difference

-  Accuracy changes little when using pure solar or net meter data

Building a Maximum Generation Model
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Modeling Net Meter Data

•  Verify using data from 10 more solar sites
-  Manually measure module tilt and orientation
-  Find values close to ground-truth using minimal data

-  Tilt slightly less accurate – difficult to distinguish between different 
tilts and different module areas/efficiencies
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SunDance Design Overview

•  1. Build a custom model of maximum solar generation
-  Find “best” fitting valid solar curve to the data
-  Can find accurately even on noisy net meter data

•  2. Build a general model of weather’s effect on irradiance
-  Train model that maps weather metrics to fraction of clear sky irradiance
-  Use to infer fraction of clear sky irradiance at any site based on weather
-  Can train model using data from any solar sites where it is available

•  3. Apply two models to disaggregate solar 
-  Solar generation Ps(t) =  Product of (1) and (2) at every time t
-  Energy consumption Pc(t) – Pnet(t) – Ps(t) 
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Building a General Weather Model

•  Weather effects – blocks solar irradiance from reaching module
-  Primarily clouds, but also humidity, dewpoint, wind, etc. increase particulates
-  Weather’s impact on blocking solar irradiance is complex

•  Data above from three locations at different times for three different 
weather conditions varies widely
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Building a General Weather Model

•  Key insight – same weather reduces the maximum solar 
irradiance by the same fraction
-  Independent of location, time, magnitude, etc.

•  Can infer weather’s effect at one location from others
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Building a General Weather Model

•  Build using supervised machine learning
-  Input – weather metrics, e.g., cloud cover, humidity, dew point, etc.
-  Output – the fraction of the clear sky solar generation
-  Construct single training set using data from many different solar sites 

where “pure” solar training data is available 

•  Use SVMs, but compatible with any machine learning model
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Building a General Weather Model
•  Key insight – we can use our maximum generation model to 

infer fraction of solar irradiance from solar power data
-  More solar power data available than pyranometer data
-  Physical effects “cancel out” in the equation below

         Pactual(t) = Iactual(t)*k*(cos(90-Θ)*sin(β)*cos(Φ-α)+sin(90-Θ)*cos(β))
         Psmax(t) = Imax(t)*k*(cos(90-Θ)*sin(β)*cos(Φ-α)+sin(90-Θ)*cos(β))

22

•  Ratio above is called the clear sky index
-  Widely used in solar forecasting
-  Enables us to estimate a clear sky index from solar power data

‣  Potentially useful for estimating ground-level irradiance
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SunDance Design Overview

•  1. Build a custom model of maximum solar generation
-  Find “best” fitting valid solar curve to the data
-  Can find accurately even on noisy net meter data

•  2. Build a general model of weather’s effect on irradiance
-  Train model that maps weather metrics to fraction of clear sky irradiance
-  Use to infer fraction of clear sky irradiance at any site based on weather
-  Can train model using data from any solar sites where it is available

•  3. Apply two models to disaggregate solar 
-  Solar generation Ps(t) =  Product of (1) and (2) at every time t
-  Energy consumption Pc(t) = Pnet(t) – Ps(t) 
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Implementation and Evaluation

•  Implement SunDance in python
-  Use simple Bird clear sky generation model, weather data from Weather 

Underground, and Scikit-learn machine learning library

•  Compare SunDance with a supervised approach for 100 sites
-  Supervised approach uses exact same method as SunDance
-  Supervised approach - builds and trains each site’s maximum generation 

model and weather model on historical solar generation data from that site
-  SunDance – assumes no access to already disaggregated training data
-  Use MAPE from sunrise to sunset as the evaluation metric 
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Disaggregating Solar

•  Illustration on a net-zero home
-  Top – net meter data
-  Bottom – disaggregated solar
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Evaluation

•  Accuracy close to that of the supervised approach
-  Improves as consumption-to-solar ratio decreases

•  MAPE highly sensitive to small errors near sunrise/sunset
-  SunDance very close to supervised approach over middle of the day
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Summary

•  SunDance - “Behind the Meter” Solar Disaggregation
-  Leverages multiple insights into fundamental relationships between 

location, weather, physical characteristics, and solar generation
-  Achieves similar accuracy without access to solar training data as a 

fully supervised approach with complete access to solar training data
-  Requires little historical net meter data to build model

•  Enables utilities to accurately monitor solar data
-  Provides training data to support other solar energy analytics
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This Talk – Discuss Two Black-box Techniques

•  2. Solar Localization
-  Determine location from “anonymous” solar energy data
-  Both a privacy threat and/or a potentially useful tool 

‣  Location is highly useful contextual information when analyzing energy data
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Privacy Implications

•  Energy data routinely monitored by third-parties, including…
-  …utilities, solar installers, researchers, governments, etc.
-  Not treated as sensitive if “anonymized”
-  Found ~28k “anonymous” homes making data available over public Internet 
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Exploiting Energy Data using Analytics 

•  Many companies actively working to develop energy data analytics
-  Identify energy waste to improve energy-efficiency
-  May also provide deep insights into user behavior

‣  What are a home’s occupancy patterns?
‣  How often do occupants go out for vacations?
‣  How often do occupants eat-in versus go out to eat?

•  Privacy implications are less concerning for anonymized data
-  Cannot associate behaviors with specific people
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This is Real
•  Real public job advertisement for an energy analytics startup 
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The Threat is Real

•  Real public job advertisement for an energy analytics startup 
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Exploiting Energy Data using Analytics 

•  Policies for handling energy data are still evolving
-  DOE’s Data Privacy and the Smart Grid: A Voluntary Code of Conduct
-  Finalized on January 8th, 2015
-  Does not require user consent to release “anonymized” energy data

‣  Defined as user account information: name, address, SSN, etc.

32
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Record Retention and Disposal:  

(1) Service Providers should retain Customer Data only as long as needed to fulfill the purpose it was 
collected for, unless they are under a legal obligation to do otherwise. 

(2) Service Providers should securely and irreversibly dispose of or de-identify Customer Data once it is 
reasonably determined by the Service Provider to be no longer necessary to achieve the purposes for 
which it was collected, unless they are under a legal obligation to do otherwise. 

(3) Service Providers should maintain records identifying what type of Customer Data has been shared 
previously with Third Parties, when the sharing occurred and with whom the data was shared for as 
long as the data exists in the Service Providers’ systems or as long as legally required. 

 
Consent Not Required: Prior customer consent is not required to disclose Customer Data in the case of: 

(1)  Third Parties responding to emergencies that pose imminent threats to life or property; 

(2)  Law enforcement or other legal officials to whom disclosure is authorized or  required by law; 

(3)  As directed by Federal or State law, or at the direction of appropriate regulatory authority; or 

(4)  Aggregated or Anonymized Data. Service Providers can share Aggregated or Anonymized data with 
Third Parties without first obtaining customer consent if the methodology used to aggregate or 
anonymize Customer Data strongly limits the likelihood of reidentification of individual customers or 
their Customer Data from the aggregated or Anonymized data set.  

i. Aggregated and Anonymized Data may be shared via a contract between the Service 
Provider and Third Party that requires that the Third Party not attempt to re-identify 
customers.  

ii. The service provider may decline a request for Aggregated or Anonymized Data release if 
fulfilling such a release would cause substantial disruption to the day-to-day activities of 
its personnel. 

 

Access to Data Other Than Customer Data: Except as required by law, Service Providers will not share with a 
Third Party the customer’s: social security number; state or federal issued identification number; financial 
account number in combination with any security code providing access to the account; Consumer report 
information provided by Equifax, Experian, TransUnion, Social Intelligence or another consumer reporting 
agency; individually identifiable biometric data; or first name (or initial) and last name in combination with 
any one of the following: (1) date of birth; (2) mother’s maiden name; (3) digitized or other electronic 
signature; and (4) DNA profile.  Such information should be obtained directly from the customer. 
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Key Insight

•  Solar energy data is not anonymous
-  Every location on Earth has a unique solar signature
-  Sun’s position in the sky is unique at each location at every moment

‣  E.g., unique sunrise, sunset, and solar noon time each day

-  Solar data embeds detailed location information
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Problem

•  How to localize the source of anonymous solar data?
-  Explore severity and threat of solar localization

‣  Depending on perspective, could also be a useful tool

-  Significant prior work on estimating solar output based on location
-  No work on estimating location based on solar output

•  SunSpot – system for localizing anonymous solar-powered homes 
based on their solar energy data
-  Inform evolving policies on handling energy data that includes solar
-  Reconsider current notions of anonymity in energy data
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Basic Approach

•  Location uniquely identified by a latitude and longitude
-  Latitude – uniquely identified by the daylength [sunrise->sunset]

‣  Duration from first to last times of positive solar generation

-  Longitude – uniquely identified by time of solar noon
‣  Maximum solar generation



David Irwin — UMass Amherst Staring at the Sun

Basic Approach

•  Location uniquely identified by a latitude and longitude
-  Latitude – uniquely identified by the daylength [sunrise->sunset]

‣  Duration from first to last times of positive solar generation

-  Longitude – uniquely identified by time of solar noon
‣  Maximum solar generation



David Irwin — UMass Amherst Staring at the Sun

Basic Approach
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Deriving Location from the Sun

•  Algorithms for deriving location from the sun are obscure
-  Typically used for celestial navigation of primitive ships
-  No widely-used open-source libraries or online APIs

•  Algorithms for deriving sunrise/sunset for location are common
-  Highly accurate but not easily reversible
-  Many open-source libraries and online APIs available

•  Leverage existing APIs as a sub-routine to conduct a binary 
search for location given sunrise/sunset times
-  (sunrise, sunset) == (daylength, solar noon)
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Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
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Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
-  …in summer, daylength increases moving south to north

•  Binary Search using API

Latitude 0!
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Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
-  …in summer, daylength increases moving south to north

•  Binary Search using API
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Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
-  …in summer, daylength increases moving south to north

•  Binary Search using API

Latitude 0!

Latitude 45!

Latitude 90!

Latitude -90!



David Irwin — UMass Amherst Staring at the Sun

Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
-  …in summer, daylength increases moving south to north

•  Binary Search using API

Latitude 0!

Latitude 45!

Latitude 22.5!

Latitude 90!

Latitude -90!
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Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
-  …in summer, daylength increases moving south to north

•  Binary Search using API

Latitude 0!

Latitude 45!

Latitude 22.5!
Latitude 33.75!

Latitude 90!

Latitude -90!
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Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
-  …in summer, daylength increases moving south to north

•  Binary Search using API
-  Accuracy below on June 21st (summer solstice)
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Deriving Latitude given Daylength

•  Note that….
-  …in winter, daylength decreases moving south to north
-  …in summer, daylength increases moving south to north

•  Binary Search using API
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Deriving Longitude given Time of Solar Noon

•  Binary Search using API
-  Use API to compute solar noon for  0° and ±180°

‣  Pick any latitude value

-  Select region with desired solar noon time
‣  Either [0°,180°] or [0°,-180°]

-  Divide selected interval by two ([0°,90°], [0°,-90°]) and repeat…
‣  …until longitude does not change

- 0° latitude
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Deriving Longitude given Time of Solar Noon

•  Binary Search using API
-  Use API to compute solar noon for  0° and ±180°

‣  Pick any latitude value

-  Select region with desired solar noon time
‣  Either [0°,180°] or [0°,-180°]

-  Divide selected interval by two ([0°,90°], [0°,-90°]) and repeat…
‣  …until longitude does not change
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SunSpot Challenge

•  Ideally, take solar generation from one day
-  Extract precise sunrise, sunset, and solar noon time (to the second)
-  Directly compute latitude and longitude accurately
-  But, solar cells are highly imprecise sensors of the sun

‣  Error translates to hundreds-to-thousands of miles 
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Solar Imprecision and Inefficiency

•  Many dimensions of imprecision
-  Solar cell inefficiency – sunrise/sunset detection lag 
-  Variable weather – may be cloudy at sunrise/sunset/solar noon
-  Shading from obstructions – nearby buildings, trees
-  Non-optimal physical properties – tilt/orientation
-  Non-optimal electrical characteristics – variations in grid voltage
-  Meter inaccuracy – typically 0.5% to 2% off

•  Accurate localization challenging using one day’s data
-  Impossible if day is near the equinox
-  SunSpot leverages data across multiple days
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Inferring Longitude from Noisy Solar Data

•  Day-to-day changes in solar noon over the year are the same at 
every location on Earth
-  31 minutes of movement captured by the Equation of Time (EoT)
-  Solar noon should precisely track the EoT
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Inferring Longitude from Noisy Solar Data

•  Day-to-day changes in solar noon over the year are the same at 
every location on Earth
-  31 minutes of movement captured by the Equation of Time (EoT)
-  Solar noon should precisely track the EoT
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Inferring Longitude from Noisy Solar Data

•  Day-to-day changes in solar noon over the year are the same at 
every location on Earth
-  To “fit” EoT, we move it up and down the y-axis
-  Stop where it overlaps the most absolute data points (within ±1m)
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Inferring Longitude from Noisy Solar Data

•  Day-to-day changes in solar noon over the year are the same at 
every location on Earth
-  To “fit” EoT, we move it up and down the y-axis
-  Stop where it overlaps the most absolute data points (within ±1m)
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Inferring Latitude from Noisy Solar Data

•  Problem: sunrise/sunset always lags solar data detection
-  Again, recall that daylength varies with latitude

‣  …in fall/winter, daylength shorter moving south to north
‣  …in spring/summer, daylength longer moving south to north

-  In fall/winter, always infer location north of actual location
-  In spring/summer, always infer location south of actual location
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Inferring Latitude from Noisy Solar Data

•  Problem: sunrise/sunset always lags solar data detection
-  Again, recall that daylength varies with latitude

‣  …in fall/winter, daylength shorter moving south to north
‣  …in spring/summer, daylength longer moving south to north

-  In fall/winter, always infer location north of actual location
-  In spring/summer, always infer location south of actual location
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Inferring Latitude from Noisy Solar Data

•  Problem: sunrise/sunset always lags solar data detection
-  Again, recall that daylength varies with latitude

‣  …in fall/winter, daylength shorter moving south to north
‣  …in spring/summer, daylength longer moving south to north

-  In fall/winter, always infer location north of actual location
-  In spring/summer, always infer location south of actual location
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Inferring Latitude from Noisy Solar Data

•  Problem: sunrise/sunset always lags solar data detection
-  Again, recall that daylength varies with latitude

‣  …in fall/winter, daylength shorter moving south to north
‣  …in spring/summer, daylength longer moving south to north

-  In fall/winter, always infer location north of actual location
-  In spring/summer, always infer location south of actual location
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Inferring Latitude from Noisy Solar Data

•  Problem: sunrise/sunset always lags solar data detection
-  Again, recall that daylength varies with latitude

‣  …in fall/winter, daylength shorter moving south to north
‣  …in spring/summer, daylength longer moving south to north

-  In fall/winter, always infer location north of actual location
-  In spring/summer, always infer location south of actual location
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Localizing a Specific Home

•  Previous steps identify only a region of interest
-  Limited by data resolution, and other inaccuracies
-  Search satellite imagery for solar-powered homes within region

‣  Filter out land area without man-made structures (>97%)
‣  Apply image recognition (either manually or algorithmically)
‣  Filter identified solar sites by size of deployment, physical properties, etc. 
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Implementation

•  SunSpot implemented in python
-  Uses available online APIs for computing sunrise/sunset for locations

‣  For latitude, use to derive daylength curves
‣  For longitude, use to derive solar noon time 

-  Uses public satellite imagery from Google Earth
‣  Leverage Google Maps API to extract images with man-made structures
‣  Apply OpenCV to remove images without >5% black pixels

-  Automatically identify solar sites from images
‣  Feed images to Mechanical Turk to identify solar sites
‣  Could also include adjustments for non-south facing sites
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Evaluation

•  Amazon Mechanical Turk
-  A crowdsourcing Internet marketplace 
-  Leverages humans to perform routine tasks

Task:  Is there a solar panel in the image?!

Yes.                                                        No.!
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Evaluation

•  Three homes with per-second data resolution 
-  Maximum localization precision ~500m
-  Inaccuracy ranges from 10-20km
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Evaluation

•  Microbenchmarks of image processing using Mechanical Turk
-  Took random urban area with 2km radius (or 12.6km2)

‣  82% covered with man-made structures

-  Extract and filtered satellite images from Google Earth
‣  Ground truth - manually checked these images for visible solar sites

-  Programmatically submitted images to Mechanical Turk
‣  99% categorized within 30m, with average time ~42 seconds
‣  93% accurate - identified all but 2 solar sites we identified manually

-  Total cost: $170.82 or $13.6/km2

‣  Costs lower, the more rural the area
‣  More privacy in urban areas – offers k-anonymity
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Prior Work

•  Estimating and predicting solar generation from location 
-  Commonly done by solar installers
-  Variety of models have been proposed 
-  SunSpot does the opposite – estimates location from generation

•  Energy analytics on smart meter data
-  Analytics represent a potential privacy threat

‣  Not significant, as long as energy data is anonymous

-  SunSpot exposes a new and different vulnerability
‣  Data most believe is anonymous may not be
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Summary 

•  SunSpot first work to expose this localization threat 

•  Some issues
-  Only uses 3 datapoints per day to infer location

‣  Every datapoint provides identifying information

-  Only uses solar signature
‣  Weather signature also provides identifying information

-  Requires data over many days
‣  Can reduce using more datapoints and weather

-  Requires fine-grained data for precision (second or minute)
‣  5-minute to 1-hour resolution more typical
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Combining SunDance and SunSpot?

•  Can we accurately localize coarse net meter data?
-  Much more significant privacy threat
-  SunSpot requires second- or minute-level data to localize a region
-  SunDance uses 1-hour resolution, since weather archives are 1-hour

•  Current Work
-  Looking at adding weather signatures to solar signatures

‣  Look to be much more accurate with coarser data

-  Leveraging irradiance estimates from visible satellite imagery
‣  Highly accurate and updated every ~15 minutes
‣  Spatial resolution of 1km2
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Preserving Privacy?

•  Many possible options with different tradeoffs
•  1. Remove timestamps from data

-  Pro – cannot identify longitude from solar signature
-  Con – can still identify latitude from solar signature

‣  Can probably identify longitude from weather signature

‣  Timestamps are useful for well-intentioned analytics

•  2. Obscure the time of sunrise, sunset, and solar noon
-  Use battery, or actively control solar output at inverter/optimizer
-  Pro – could likely mitigate SunSpot attack using little energy
-  Con – more sophisticated attacks that use whole signature still possible

‣  Does not address weather-based attacks, potentially accurate at day-level

‣  Less efficient, reduces our generation
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Questions
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