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1. INTRODUCTION
Cloud providers and consumers encounter a variety of pric-

ing models devised to disincentivize the occurrence of high or
unpredictable demands (especially simultaneously from multi-
ple consumers) and incentivize certain kinds of behavior (e.g.,
predictable resource procurement, adhering to requested re-
source demands, etc.). Examples of such arrangements may
have a cloud in the role of (i) a consumer (e.g., a data center
procuring power from an electric utility based on tiered [10]
or peak-based [5] pricing (we elaborate on both of these mo-
mentarily), or network bandwidth from an Internet Service
Provider (ISP) based on a high percentile of bandwidth us-
age [1]), (ii) a provider (e.g., IT customers procuring virtual
machines (VMs) or storage from a cloud provider such as
Amazon EC2 [3, 2]), or (iii) both (e.g., a Content Distribu-
tion Network (CDN) provider such as Akamai renting rack
space from another data center and paying the data center
rather than an electric utility for provisioned power [9]). Ta-
ble 1 presents some such situations.

Utility Consumer Resource(s) Pricing
provider scheme

Electric, Cloud Power, Tiered, peak+avg.,
ISP data center Network b/w Peak (high %-ile)
Cloud CDN Space+servers, Capacity-based,
data center power Peak-based
IaaS Cloud On-demand
data center IT customers VMs/storage (fixed or spot),

Reservation-based

Table 1: Examples of cloud data centers or their customers negotiating

complex tariffs such as those involving tiered or peak-based pricing.

Each of these situations presents two complementary con-
trol and optimization problems. First, once a pricing scheme
has been negotiated, how should the consumer modulate its
demand to optimize its profits? Problems of this kind have re-
ceived a lot of attention in recent literature: examples include
minimizing the electricity bill for time-varying prices [11, 12],
minimizing the peak power draw using batteries [4], cost-
optimal procurement of VMs from clouds that offer both on-
demand (more expensive) or reservation-based “bulk” (cheaper)
VMs [13], and optimizing the electricity bill when the pricing
scheme charges higher during “coincident” peaks [7], among
others. The second problem, which we study in this paper,
asks: how should the provider and consumer negotiate the spe-
cific pricing structure they will employ?
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We explore this question by focusing on two popular pricing
mechanisms:

• Tiered, wherein some demand/usage thresholds define
differential per unit prices for the resource(s); a special
case has only one threshold, upon exceeding which a
high rate (or additionally a “penalty”) is imposed (e.g.,
electric utilities often employ tiered pricing [10]).

• Demand “tail”-based, wherein (potentially in addition
to average resource usage) charges are applied based on
some property of the tail of observed or requested de-
mand distribution (e.g., 95th percentile [1] or peak [5]).

There are other pricing schemes such as “bulk” purchase
which are equally important; we do not discuss these in this
paper [2, 13] but we do consider them insteresting directions
for future work. We sketch initial ideas for decision-making
regarding the cost-optimal pricing option at a single con-
sumer in Section 2 followed by strategic interactions between
providers and consumers in Section 3. We conclude with di-
rections for future research in Section 4.

2. SINGLE CONSUMER
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Figure 1: Pricing options presented by the

provider for our tiered and peak+avg.-based

models.

Consider a single
consumer C that
procures a resource
from a single provider
P according to a
pricing scheme they
agree upon period-
ically (e.g., once
every few months)
and which is then
fixed for the re-
mainder of this pe-
riod. Our interest
is in the decision-
making at C when
choosing a pricing
option out of a set of options that P presents it with. One in-
tuitively appealing goal for C would be to pick a pricing option
that maximizes its expected profit (revenue minus costs) over
the billing cycle (given knowledge of its demand and control
options). We consider a time-slotted model where a billing
cycle consists of T control windows. Suppose the consumer’s
resource demand in window t (1 ≤ t ≤ T ) is denoted as dt.
Suppose that C earns revenue ρ for every unit of resource it
procures from P. We explore this decision-making via two



case studies with simplifying assumptions about C’s demand,
and then discuss ideas for generalizing it in Section 2.3.

2.1 Inelastic Demand, Tiered Pricing
For our first case study, we assume a tiered pricing model

which has two parameters dhi and phi with the following
meaning: if dt ≤ dhi, the per unit resource price is $1, while
if dt > dhi the per unit resource price is phi > $1. We as-
sume that C poses inelastic demand, i.e., it can not modulate
its demand in any way and must procure all of dt from P
during t, ∀t. Suppose that P presents pricing options as in
Figure 1(a), e.g., by expressing allowed pairs of (phi, dhi) in
the form of a function of phi = ftier(dhi). Suppose that dt is
an i.i.d. random variable following the Pareto distribution:

fdt(x) =

{
αxαm
xα+1 for x ≥ xm,
0 otherwise,

where α > 0 and xm > 0. C would pick (phi, dhi) to maxi-
mize its expected profit per control window, resulting in the
following optimization problem:

max
phi,dhi

ρ

∫ ∞
xm

x
αxαm
xα+1

dx−
{∫ dhi

xm

x
αxαm
xα+1

dx +∫ ∞
dhi

(
dhi + phi(x− dhi)

) αxαm
xα+1

dx
}
.

Subject to: dmin ≤ dhi ≤ dmax, 1 < pmin ≤ phi ≤ pmax.

Since we assume that C does not modulate its demand (un-
like in our subsequent models), this is equivalent to:

min
phi,dhi

∫ dhi

xm

x
αxαm
xα+1

dx +

∫ ∞
dhi

(
dhi + phi(x− dhi)

) αxαm
xα+1

dx,

with the same constraints as before. The objective above

simplifies to: minphi,dhi
1

α−1

(
αxm + (p − 1)xαmd

1−α
hi

)
. We

can now employ the known function ftier(.) to express the
above solely in terms of dhi and derive d∗hi that minimizes the
resulting expression. As a specific example, if phi = a+ bdhi
(“linear” in Figure 1(a)), we find:

d∗hi =
(1− a)(α− 1)

b(α− 2)
.

In Table 2 (row labeled “Inelastic”) we present some simple
results based on our analysis. As expected intuitively, with
higher demand variance, we prefer higher dhi.

2.2 Elastic Demand, Peak-Based Pricing
Now suppose that P employs an avg+peak-based pricing

scheme with parameters pav and ppk denoting the per unit
resource price and the peak usage price per billing cycle, re-
spectively. We continue to assume that dt follows the Pareto
distribution above, which implies that the consumer must cap
its demand to a finite value. We assume that it employs a “de-
mand discarding” knob with associated loss of revenue (ldisc)
for every unit of resource demand discarded. P presents pric-
ing options as in Figure 1(b), e.g., by expressing allowed pairs
of (pav, ppk) in the form of a function of ppk = fpk(pav).
C would want to choose pav, ppk, and a demand threshold

ddisc (any demand in excess of ddisc will be discarded) to

Demand Params. Low var. Med. var. High var.
(α = 100) (α = 50) (α = 2.5)

Inelastic (phi, dhi) (1.0092, 181.84) (1.0188, 183.75) (2.8, 540)
Elastic (pav, ppk) (0.05, 10) (0.05, 10) (1, 105)
(discarding) ddisc 107.54 115.65 701.39

Table 2: Some results from our case-studies. We choose demand distri-

butions with the same average but different variances for which different

pricing options are chosen by our analysis. xm=100, T=720, ρ=10; op-

tions for tiered pricing: phi = 0.1 + 0.005dhi; options for peak+avg.-based

pricing: ppk = 5 + 100pav , ldisc=10.

maximize its expected profit:

max
pav,ppk,ddisc

− ppkddisc + T
{∫ ddisc

xm

(ρ− pav)x
αxαm
xα+1

dx+∫ ∞
ddisc

(
(ρ− pav)ddisc − ldisc(x− ddisc)

) αxαm
xα+1

dx
}
,

which corresponds to:

d∗disc = xm

(
T (ρ+ ldisc − pav)

ppk

)1/α

.

In Table 2 (row labeled “Elastic”) we present some simple
results based on the above analysis. As expected intuitively,
ddisc increases with the variance in demand.

2.3 General Elastic Demand
As an initial attempt at dealing with general demands and

control options, we present a simple model for optimization
based on chance (in-probability) constraints, and leave for
future work more complex models leveraging the large litera-
ture on queues controlled by Markovian decisions. Let µ be
the mean of the consumer’s “raw” resource demand ∆. We
consider more general demand modulation (based on delay-
ing part of the demand) wherein units of demand will drop
out and not return if they are deferred (initially delayed) by
more than τ seconds. In addition to µ, τ , suppose ∆ is also
modeled by a “generalized stochastically bounded burstiness”
curve [15] {(r, φ(rτ)) | r > µ}; i.e., a queue whose arrivals are
∆ and is served at rate r will have backlog Qr such that

P(Qr ≥ rτ) ≤ φ(rτ).

We would explore ways of learning the demand model (µ, τ, φ(·));
significant literature exists on this. For example, this could
be based on analysis of day-ahead prices of power or more ex-
tensive historical demand data recorded in the same context
as the present demand, ∆, under consideration). As another
example, jobs/requests arriving at a data center could be clas-
sified so that their expected virtual machine needs or energy
requirements, and Qr in turn, could be estimated.

Note that the peak rate of the queue-output is limited to r.
Assume that the load shed by this regulating queue is µφ(rτ);
this is an approximation in particular because the arrivals are
not Poisson so that PASTA [14] does not apply. Our offline
objective is to select r to maximize the net revenue of the
data center modeled as (ρ − c)Tµ(1 − φ(rτ)) − f(r), where
ρ > c respectively are the revenue and cost.The resulting
optimization problem is given by

max
r∈R

h(r) , (ρ− c)Tµ(1− φ(rτ))− f(r),

where R , [0, r̄] and r̄ denotes the upper bound on the rate.
Under the assumption that f and φ are continuously dif-



ferentiable and convex functions of r, the optimal rate r∗

is given by a solution to a variational inequality problem
VI(R,−∇rh) [6]. It may be recalled that r∗ is a solution
of VI(R,−∇rh) if

(r − r∗)T∇rh(r) ≤ 0, ∀r ∈ R.

An interesting direction for future work would explore if a
formulation such as above is general enough to allow the ones
in Sections 2.1 and 2.2 and others (or appropriate approxi-
mations of these) as its special cases.

3. STRATEGIC INTERACTIONS
A natural concern in a multi-agent setting lies in the im-

pact of competitive interactions. In this section, we consider
several variants of such interactions. We begin by examining
a noncooperative Nash game played amongst a collection of
consumers faced by a single non-strategic provider. Subse-
quently, we allow for the provider to assume a leadership role
in designing pricing structures while being cognizant of the
Nash equilibrium that ensues between the consumers.

3.1 Strategic Consumers
Consider a noncooperative setting comprising of N con-

sumers facing a fixed pricing structure. Suppose consumer i’s
profit function is denote by hi(ri; r−i) where

hi(ri; r−i) , (ρi − ci)Tµ(1− φ(τri))− f

(
N∑
i=1

ri

)
,

ρi denotes consumer i’s revenue, ci denotes her cost, and
r−i = (rj)j 6=i. The function f denotes a continuously differen-
tiable increasing convex cost function associated with the co-
incident peak, given

∑N
i=1 ri. The resulting Nash equilibrium

problem is given by a tuple {r∗i }Ni=1 where for i = 1, . . . , N ,
r∗i is a solution of the following parameterized problem:

r∗i ∈ argmaxri∈Ri hi(ri; r−i), (Prob(r−i))

Under suitable convexity assumptions, r∗ is a Nash equilib-
rium if and only if it is a solution to VI(R, F (r)) where

R ,
N∏
i=1

Ri and F (r) ,

 −∇r1h1

...
−∇rNhN

 .

Proposition 1. Consider a Nash game in which the ith
consumer solves (Prob(r−i)) for i = 1, . . . , N . Then a unique
Nash equilibrium exists.

Note that existence follows from the nonemptiness and com-
pactness of R and the continuity of F (r). Furthermore, by
observing that the map F (r) is strictly monotone over R and
noting that a solution exists, it follows that VI(R, F (r)) ad-
mits a unique solution. A related question is whether this
equilibrium is efficient with respect to a problem where all
users are centrally controlled. If not, are there choices of
price designs that lead to minimal efficiency loss from the
standpoint of system welfare.

3.2 Strategic Providers
One avenue for designing pricing structures is to consider

a single-leader multi-follower problem in which the service
provider takes on the garb of a leader while the followers are
the consumers. Through such a model, the service provider

optimizes the choice of pricing parameters over the set of
equilibria arising from the Nash interactions between the fol-
lowers. For instance, consider a problem where the provider
(leader) chooses µ and τ and the consumers (followers) reach
an equilibrium by responding to this choice:

max
r∈R,τ,µ

w(µ, τ, r)

Subject to r solves VI(R, F (r, θ)),

where w(µ, τ, r) denotes the welfare function of the service
provider. This problem is known as a mathematical program
with equilibrium constraints (MPEC) [8], a class of noncon-
vex programs, but given that the Nash equilibrium problem
is defined via a strictly monotone map, we believe that an
implicit form may be constructed.

max
τ,µ

w(µ, τ, r(µ, τ)),

where r(µ, τ) denotes a single-valued map that defines the
Nash equilibrium, given τ and µ. Note that the claim of
single-valuedness is by no means easy to make but rests on
the structural properties of the map.

A final question is whether one may consider a problem
where a collection of providers compete for business across a
set of consumers. In such an instance, the resulting problem
reduces to a multi-leader multi-follower game in which the
providers compete in a Nash game in which each provider
solves an MPEC.

4. CONCLUSIONS
Whereas price negotiation is a very general concern, the

unique and idiosyncratic properties of cloud workloads, their
performance needs, and the impact of workload modulation
on their resource consumption and revenue imply that this
area offers rich and novel modeling/optimization problems. In
particular, cloud environments appear to present us with col-
lections of different/hybrid pricing schemes among the same
set of providers and consumers (e.g., tiered pricing for power
and tail-based pricing for network bandwidth faced by CDNs [9]).
We plan to enhance our modeling to capture these scenarios
as part of our future work.
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