On redundancy-d with cancel-on-start a.k.a
Join-shortest-work (d)

Urtzi Ayesta', Tejas Bodas # and Ina Maria Verloop®

LCNRS, IRIT, 2 rue C. Camichel, 31071 Toulouse, France
2CNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, France

1. INTRODUCTION

Using redundancy to minimize latency in parallel server
systems has become very popular in recent years [1—6]. While
there are several variants of a redundancy-based system, the
general notion of redundancy is to create multiple copies of
the same job that will be sent to a subset of servers. By
allowing for redundant copies, the aim is to minimize the
system latency by exploiting the variability in the queue
lengths of the different queues. Several recent works, both
empirically [1,2] and theoretically [3—06], have provided indi-
cations that redundancy can help in reducing the response
time of a system.

Broadly speaking, depending on when replicas are deleted,
we can consider two classes of redundancy systems: cancel-
on-start (c.0.s) and cancel-on-completion (c.o0.c). In redun-
dancy systems with c.o.c, once one of the copies has com-
pleted service, the other copies are deleted and the job is
said to have received service. On the other hand, in re-
dundancy systems with c.0.s, copies are deleted as soon as
one copy starts being served. In a recent series of papers,
Gardner et al. [5,6] have provided a thorough analysis of
redundancy systems with c.o.c in a system with K servers
each with their own queue. In the redundancy-d model of [(],
redundant copies of an arriving job are sent to d < K homo-
geneous servers chosen uniformly at random. Most of the
recent literatures have focused on systems with c.o.c, and
c.0.s. has remained largely elusive to exact analysis. From
a practical point of view, if servers have similar computing
capacity, the c.0.s system is preferable. Both configurations
require the same amount of signaling among servers, but the
c.o.s system does not waste any computation resources.

In this paper, we provide, to the best of our knowledge,
the first analysis on a redundancy-d system with c.o.s. for
1 < d < K. We assume exponentially distributed ser-
vice times, but copies do not need to be i.i.d. To ana-
lyze redundancy-d system with c.o.s., we use the same state
space representation as that of the multi-type job and server
model of Visschers et al. [7]. This allows us to conclude

*Corresponding author: tejaspbodas@gmail.com.

Research partially supported by the French ”Agence Na-
tionale de la Recherche (ANR)” through the project ANR-
15-CE25-0004 (ANR JCJC RACON)

Copyright is held by author/owner(s).

that the steady-state distribution of c.0.s is of product-form.
We then obtain an expression for the probability generating
function (PGF) of the number of waiting jobs in the sys-
tem and for the mean number of jobs in the system. We
finally show that redundancy-d with c.o.s is equivalent to
Join-Shortest-Work queue with redundancy (JSW(d)). As
a result, performance measures obtained for the c.0.s model
carry over to JSW(d).

2. MODEL DESCRIPTION

The redundancy-d model with c.o.s consists of K homo-
geneous servers each with a first-in first-out (FIFO) queue.
The service rate of each server is denoted by u. Let M =
{m1,...,mx} denote the set of servers. Jobs arrive accord-
ing to a Poisson process with rate A and have an exponen-
tially distributed service requirement with unit mean. An
arriving job chooses d of K servers uniformly at random and
sends d copies of the same job to these feasible servers. We
will say that all jobs that choose the same d servers are said
to be of the same type. In all, there are (5) job types and

the arrival rate of any job type is Asype = ﬁ Let C de-

note the set of job types. Once any of the cgpies is taken
for service, the remaining copies are canceled immediately.
Further, on arrival of a job, if more than one of its d feasible
servers are idle, then the job is served immediately at one of
the idle feasible servers based on a uniform assignment rule
(choose an idle feasible server uniformly at random) and the
remaining copies are canceled. The total system load is de-
fined as p = I% and we assume p < 1. For both c.0.s. and
c.o.c., p < 1 is also the stability condition.

An important point to note is that the c.0.s. redundancy-
d model has a central queue architecture (c.q.a. for short).
This means that the parallel server system can equivalently
be represented by a single central queue with multiple servers
choosing (multi-type) jobs from the central queue. Refer
to [5] where the c.q.a. was first noted for the c.o.c. model.
In order to analyze the redundancy-d model with c.o.s., we
use the c.q.a. which now allows us to view our model as a
special case of the multi-type job and server model [7]. See
technical report [3] for details.

State space representation for c.o.s.

A Markovian descriptor introduced in [7] which is appro-
priate for the redundancy-d c.o.s. system is of the type
(ns, Mi,mi—1, Mi—1,...,n1, M1) which denotes states with
i busy servers (denoted by Mi, ..., M;) and n; waiting jobs
between servers M; and M;4; for 1 < j <i—1. In this state

space representation, waiting jobs and active servers are ar-
ranged in a FIFO basis from right to left. Therefore all n;
jobs have arrived before ny jobs where 1 < j < k < i. Note
that a job is waiting in the central queue only if all of its
feasible servers are busy (serving jobs that came before it).
Therefore n1 denotes the number of those jobs (who have ar-
rived before n; jobs where 7 > 1) that have to wait since they
have server M as their only feasible server which happens to
be busy. Similarly, n; represent jobs (that arrived after n;_,
but before 1,41 jobs) that have to wait because their feasible
servers are busy. The feasible servers for these n; jobs must
clearly be a subset of the active servers {Mi, Mo, ..., M;}
ahead of it (otherwise the job would not have been waiting
if any of its feasible server was idle). (See [7] for precise de-
tails.) An important point to note is that for redundancy-d
c.0.s., since each job type has d feasible servers, it can never
happen that there are jobs in the central queue waiting to
be served and that there are less than d busy servers in the
system. Therefore, n1 =... =ng4—1 = 0.

Now denote the state space of the Markov chain by S and

let any generic state s € S be of the type (n;, M;, ..., n1, My).

Define Ay ({Ma, ..., M;}) as the activation rate of server M,
when the set of active servers is {Mi, ..., Mz} In state s =
(ns, M, ...,n1, M), this is the transition rate from state
s to state (0, M, s). This activation rate Aas ({M1,..., M;})
depends on the assignment rule defined for the model, which
determines to which idle feasible machine (if any) a job is
routed. By considering assignment rules that satisfy a cer-
tain assignment condition, Visschers et al. [7] are able to ob-
tain a product form stationary distribution (Theorem 2, [7]).
Now to apply Theorem 2, [7] to the c.o.s. model, we need
to verify that the uniform assignment rule required for the
redundancy-d c.o.s. model also satisfies the assignment con-
dition given in [7]. We prove in the following lemma that
this is indeed the case. (See [8] for the proof.) This will
subsequently let us obtain a product form stationary distri-
bution for c.o.s model as in [7].

Lemma 1. The uniform assignment rule satisfies the as-
signment condition given in [7].

3. REDUNDANCY-¢ WITH c.0.s.: AN EX-
ACT ANALYSIS

In this section, we provide the first exact analysis for the
redundancy-d model with c.o.s..

3.1 Product form stationary distribution
We first provide the steady state distribution for the c.o0.s

system with the Markovian descriptor s = (n;, M;,...,n1, Mi),

which has a product form. We obtain this by applying The-
orem 2, [7] to the c.o.s. model. (See the technical report [3]
for a proof.)

Proposition 1. The steady state distribution for any state
s = (’I’Li,Mi,...,’rLl,Ml) €S withny =...=ng_1 =0 is
given by

(s) = G (K, d) 2= fori<d
G K, d) T p(F=ams) for i > d.

k3

where 7(0) is the probability of an empty system and where

_ (i=h)

= i, GY(K,d)=]]G;(K,d) and

Ti K—1
(d—l) j=1
min(j—1,d—1) 7j—1 K—j
_ d ()(d— —1)
Gj(K,d) = =) > e
d—l) = —1+d— -
a=max(0,j—14+d—K)
For any state s = (ns, M;,...,n1,M1) € S where ny =
... =ng-1 =0 1s not true, we have w(s) = 0. O

It is interesting to point out that the stationary distri-
bution does not depend on the identity of the servers that
are active since the servers are assumed to be homogeneous.
Hence the stationary probabilities for states with the same
number of active servers (i) and same number of waiting
(n;) jobs between servers are the same.

3.2 Normalization constant

We denote by p(i) the stationary probability that the
redundancy-d model with c.o.s. has ¢ busy servers, for 1 <
¢ < K. This metric would be useful in obtaining the nor-
malizing constant 7(0), which is also the probability that
the system is empty, i.e., there are no busy servers (p(0) =
m(0)). Noting that p(i) = 3= .5 7(s) where S; = {s € S :
exactly i servers are busy}, we have the following lemma.
The proof can be found in [8].

Lemma 2. The probability that i servers are busy is given
by p(i) = p(i)w(0) where

{(Ij)éi(K,d)pi, fori<d
1)(1)(If)G'i(K,d)pi7 fori>d

1—r; 1—rg

pli) =

-1
and r; = pt;. Further, m(0) is given by w(0) = (1 +3K, ﬁ(z))

O

3.3 PGF of number of waiting jobs

We next obtain the expression for the probability-generating
function for the number of waiting jobs in the system. De-
fine p(i,m) as the probability that the system has i busy
servers and m waiting jobs in the system. When i < d, we
have p(i,m) = p(i) for m = 0 and p(i,m) = 0 elsewhere.
For i > d, it follows from Proposition 1 that

p(i,m) = =(0) <IZ(> G'(K,d)p'l;(m)
Z riL oy

{n;...nq:
E;=d n;=m}

where [;(m)

Let @ denote the random variable corresponding to the
number of waiting jobs in the c.o.s. system. The prob-
ability that there are m waiting jobs (Q = m) is given
by p(m) = Zf{zlp(i,m). Using the above expressions for
p(i,m), we have the following result (proof in [8]).

Proposition 2. The P.G.F. for the number of waiting jobs
is given by

d—1 K i
E(z?) =Y "p()+ > p() | [] Geoms; (2) (2)
i=0 i=d j=d

25

‘ -*-‘E(N)‘ for c.0.s with p‘: 0.7
~e- EB(N) for c.o.c with p = 0.7
-v-E(N) for c.o.s with p = 0.35
-+ E(N) for c.o.c with p=0.35

Figure 1: E(N) for c.o.c. and c.o.s. for K = 10.

where Geom, (2) = % and r; = pr;. The expected num-

ber of waiting jobs in the system is given by

E@Q) =Y p(0) | D 17 3)
i=d j J

=d

and the expected number of jobs in the system is given by
E(N)=E(Q)+ pK. O

4. COMPARING c.0.s AND c.o.c

We compare E(N) under c.o.s and c.o.c systems (the
mean number of customers E(N) in the c.o.c. system is de-
rived in [0] assuming copies are i.i.d.). Consider c.o.c. and
c.0.s. systems with parameters K = 10,p = 0.35 and 0.7.
For varying values of d, Fig. 1 compares E(N) for the two
systems.

The case d = 1 for both models is equivalent to Bernoulli
routing to K servers in which case we have E(N) = le’;
The case, d = K for the c.o.c. model coincides with an
M/M/1 server with arrival rate of A and service rate of
Ky and hence E(N) = 1£,. On the other hand, d = K

i
for c.o.s. corresponds to an M/M/K system with arrival
rate A and K servers each with a service rate 1. Hence
E(N) for the M/M/K system is larger than that of the
M/M/1 system associated with d = K for c.o.c. For 1 <
d < K, we also see that E(N) for c.o.s. is larger than that
of the c.o.c. model and this is true for any value of p. This
is an unexpected conclusion (since c.o0.s. does not waste any
resources) that c.o.s. is worse in terms of mean number of
jobs. It can be argued (see [8]) that this is primarily due
to the assumption of i.i.d copies in case of c.o.c. (together
with exponential requirements). Clearly, such assumptions
can lead to conclusions that are qualitatively different from
what one intuitively expects.

5. JSW(d) & redundancy-d with C.0.s.

In this section, we will provide our main proposition on
the equivalence of the redundancy-d c.o.s. model with that
of the join the shortest work among d servers (JSW(d)) pol-
icy. While this is trivial to note for the case when d = 1 and
d = K, the proposition formalizes this fact for any d. The
reasoning is based on a sample-path argument, hence, the

equivalence holds for generally distributed service require-
ments and heterogeneous servers. The proof can be found
in the technical report [8].

Proposition 3. Assume generally distributed service re-
quirements and heterogeneous servers. For any given sample-
path realization, a given job will be served under both JSW(d)
and redundancy-d with c.o.s. in the same server. As a re-
sult, the following performance measures of joint probability
of servers being busy or idle, delay distribution of a job and
total number of (waiting) jobs in the system, are the same
under both models. O

Remark 1. With the above proposition, redundancy-d with
c.0.s. can be perceived as a method of implementing JSW(d)
without requiring knowledge of residual work in each queue.

From the equivalence between JSW(d) and redundancy-d
with c.0.s., we have the following corollary that to the best
of our knowledge provides performance metrics for JSW(d)
that have not been obtained before.

Corollary 1. For a JSW(d) system with Poisson arrivals
and exponential service requirements, the P.G.F. for the num-
ber of waiting jobs is given by Eq. (2) and the expected num-
ber of waiting jobs in JSW(d) is given by Eq. (3). The
expected number of jobs in JSW(d) is given by E(N) =
E(Q) + pK. O

See [9] for a very recent analysis of JSW(d) in the mean-
field regime.

6. REFERENCES

[1] Ganesh Ananthanarayanan et al., “Reining in the
outliers in map-reduce clusters using mantri.,” in
0SDI, 2010, vol. 10, p. 24.

[2] Ashish Vulimiri et al., “Low latency via redundancy,”
in Proceedings of the ACM conference on Emerging
networking experiments and technologies. ACM, 2013,
pp. 283-294.

[3] Gauri Joshi, Emina Soljanin, and Gregory Wornell,
“Queues with redundancy: Latency-cost analysis,”
ACM SIGMETRICS Performance Evaluation Review,
vol. 43, no. 2, pp. 54-56, 2015.

[4] Nihar B Shah, Kangwook Lee, and Kannan
Ramchandran, “When do redundant requests reduce
latency?,” IEEE Transactions on Communications, vol.
64, no. 2, pp. 715-722, 2016.

[5] Kristen Gardneret et al., “Queueing with redundant
requests: exact analysis,” Queueing Systems, vol. 83,
no. 3-4, pp. 227-259, 2016.

[6] Kristen Gardner et al., “Redundancy-d: The power of
d choices for redundancy,” Operations Research, 2017.

[7] Jeremy Visschers, Ivo Adan, and Gideon Weiss, “A
product form solution to a system with multi-type jobs
and multi-type servers,” Queueing Systems, vol. 70, no.
3, pp. 269-298, 2012.

[8] Urtzi Ayesta, Tejas Bodas, and Ina Maria Verloop, “On
a unifying product form framework for redundancy
models,” Rapport LAAS n 18047, 2018.

[9] Tim Hellemans and Benny Van Houdt, “On the
power-of-d-choices with least loaded server selection,”
To appear in ACM Sigmetrics 2018. Also available as
arXiv preprint arXi:1802.05420, 2018.

	Introduction
	Model Description
	Redundancy-d with c.o.s.: An exact analysis
	Product form stationary distribution
	Normalization constant
	PGF of number of waiting jobs

	Comparing c.o.s and c.o.c
	JSW(d) & redundancy-d with c.o.s.
	References

