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ABSTRACT
We study smoothed online convex optimization, a version
of online convex optimization where the learner incurs a
penalty for changing her actions between rounds. Given
a Ω(
√
d) lower bound on the competitive ratio of any online

algorithm, where d is the dimension of the action space, we
ask under what conditions this bound can be beaten. We
introduce a novel algorithmic framework for this problem,
Online Balanced Descent (OBD), which works by iteratively
projecting the previous point onto a carefully chosen level
set of the current cost function so as to balance the switch-
ing costs and hitting costs. We demonstrate the general-
ity of the OBD framework by showing how, with different
choices of “balance,” OBD can improve upon state-of-the-
art performance guarantees for both competitive ratio and
regret; in particular, OBD is the first algorithm to achieve
a dimension-free competitive ratio, 3 + O(1/α), for locally
polyhedral costs, where α measures the “steepness” of the
costs. We also prove bounds on the dynamic regret of OBD
when the balance is performed in the dual space that are
dimension-free and imply that OBD has sublinear static re-
gret.

1. INTRODUCTION
In this paper we develop a new algorithmic framework,

Online Balanced Descent (OBD), for online convex opti-
mization problems with switching costs, a class of prob-
lems termed smoothed online convex optimization (SOCO).
Specifically, we consider a setting where a learner plays a
series of rounds 1, 2, . . . , T . In each round, the learner ob-
serves a convex cost function ft, picks a point xt from a
convex set X , and then incurs a hitting cost ft(xt). Addi-
tionally, she incurs a switching cost for changing her actions
between successive rounds, ‖xt−xt−1‖, where ‖·‖ is a norm.

This setting generalizes classical Online Convex Optimiza-
tion (OCO), and has received considerable attention in re-
cent years as a result of the recognition that switching costs
play a crucial role in many learning, algorithms, control,
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and networking problems. In particular, many applications
have, in reality, some cost associated with a change of ac-
tion that motivates the learner to adopt “smooth” sequences
of actions. For example, switching costs have received con-
siderable attention in the k-armed bandit setting [1, 13, 17]
and the core of the Metrical Task Systems (MTS) litera-
ture is determining how to manage switching costs, e.g., the
k-server problem [6,7].

Outside of learning, SOCO has received considerable at-
tention in the networking and control communities. In these
problems there is typically a measurable cost to changing an
action. For example, one of the initial applications where
SOCO was adopted is the dynamic management of service
capacity in data centers [20, 21], where the wear-and-tear
costs of switching servers into and out of deep power-saving
states is considerable. Other applications where SOCO has
seen real-world deployment are the dynamic management of
routing between data centers [19, 23], management of elec-
trical vehicle charging [15], video streaming [14], speech an-
imation [16], multi-timescale control [12], power generation
planning [4], and the thermal management of System-on-
Chip (SoC) circuits [24,25].

An important aspect of nearly all the problems mentioned
above is that they are high-dimensional, i.e., the dimension
d of the action space is large. For example, in the case of
dynamic management of data centers the dimension grows
with the heterogeneity of the storage and compute nodes
in the cluster, as well as the heterogeneity of the incom-
ing workloads. However, the design of algorithms for high-
dimensional SOCO problems has proven challenging, with
fundamental lower bounds blocking progress.

Initial results on SOCO focused on finding competitive
algorithms in the low-dimensional settings. Specifically, [20]
introduced the problem in the one-dimensional case and gave
a 3-competitive algorithm. A few years later, [5] gave a
2-competitive algorithm, still for the one-dimensional case.
Following these papers, [3] claimed that SOCO is equivalent
to the classical problem of Convex Body Chasing [11], in the
sense that a competitive algorithm for one problem implies
the existence of a competitive problem for the other. Using
this connection, they claimed to show the existence of a
constant competitive algorithm for two-dimensional SOCO.
However, their analysis turned out to have a bug and has
been retracted [22].

However, the connection to Convex Body Chasing also
highlights a fundamental limitation. In particular, it is not
possible to design a constant competitive algorithm for high-
dimensional SOCO without making restrictions on the cost



functions considered, due to the following proposition:

Proposition 1. For general convex cost functions and `2
switching costs, the competitive ratio of any algorithm is
Ω(
√
d).

Given the importance of high-dimensional SOCO prob-
lems in practical applications, this lower bound motivated
the exploration of “beyond worst-case” analysis for SOCO as
a way of breaking through the

√
d barrier. To this end, [2,4,

8,9,19] all explored the value of predictions in SOCO, high-
lighting that it is possible to provide constant-competitive
algorithms for high-dimensional SOCO problems using al-
gorithms that have predictions of future cost functions, e.g.,
[19] gave an algorithm based on receding horizon control
that is 1+O(1/w)-competitive when given w-step lookahead.
Recently, this was revisited in the case quadratic switching
costs by [18], which gives an algorithm that combines re-
ceding horizon control with gradient descent to achieve a
competitive ratio that decays exponentially in w.

The prior discussion highlights the challenges associated
with designing algorithms for high-dimensional SOCO prob-
lems, both in terms of competitive ratio and dynamic re-
gret. In this paper, we introduce a new, general algorithmic
framework, Online Balanced Descent (OBD), that yields an
algorithm with a dimension-free, constant competitive ratio
for locally polyhedral cost functions and `2 switching costs.
OBD achieves these results without relying on predictions
of future cost functions.

The key idea behind OBD is to move using a projection
onto a carefully chosen level set at each step chosen to “bal-
ance” the switching and hitting costs incurred. The result-
ing OBD algorithm is efficient to implement, even in high
dimensions. They are also memoryless, i.e., do not use any
information about previous cost functions.

The technical results of the paper bound the competitive
ratio of OBD. In both cases we obtain results that improve
the state-of-the-art. In the case of competitive ratio, we
obtain the first results that break through the

√
d barrier

without the use of predictions. In particular, we show that
OBD with `2 switching costs yields a constant, dimension-
free competitive ratio for locally polyhedral cost functions,
i.e. functions which grow at least linearly away from their
minimizer. Specifically, in Theorem 3 we show that OBD
has a competitive ratio of 3 + O(1/α), where α bounds the
“steepness” of the costs. Note that [5] shows that no memo-
ryless algorithm can achieve a competitive ratio better than
3 for locally polyhedral functions. By equivalence of norms
in finite dimensional space, our algorithm is also competi-
tive when the switching costs are arbitrary norms (though
the exact competitive ratio may depend on d).

2. A COMPETITIVE ALGORITHM
In this section, we use the OBD framework to give the

first algorithm with a dimension-free, constant competitive
ratio for online convex optimization with switching costs in
general Euclidean spaces, under mild assumptions on the
structure of the cost functions. Recall that, for the most
general case, where no constraints other than convexity are
applied to the cost functions, the competitive ratio of any
online algorithm must be Ω(

√
d) for `2 switching costs, i.e.,

must grow with the dimension d of the decision space. Our
goal in this section is to understand when a dimension-free,
constant competitive ratio can be obtained. Thus, we are

naturally led to restrict the type of cost functions we con-
sider.

Our main result in this section is a new online algorithm
whose competitive ratio is constant with respect to dimen-
sion when the cost functions are locally polyhedral, a class
that includes the form of cost functions used in many ap-
plications of online convex optimization, e.g, tracking prob-
lems and penalized estimation problems. Roughly speaking,
locally polyhedral functions are those that grow at least lin-
early as one moves away from the minimizer, at least in a
small neighborhood.

Definition 2. A function ft with minimizer vt is locally
α-polyhedral with respect to the norm ‖ · ‖ if there exists
some ε > 0, such that for all x ∈ X with ‖x− vt‖ ≤ ε,
ft(x)− ft(vt) ≥ α ‖x− vt‖.

Note that all strictly convex functions ft which are lo-
cally α-polyhedral automatically satisfy ft(x) − ft(vt) ≥
α ‖x− vt‖ for all x, not just those x which are ε close to
the minimizer vt. In this setting, local polyhedrality is anal-
ogous to strong convexity; instead of requiring that the cost
functions grow at least quadratically as one moves away
from the minimizer, the definition requires that cost func-
tions grow at least linearly. The following examples illus-
trate the breadth of this class of functions. One impor-
tant class of examples are functions of the form ‖x − vt‖a
where ‖ · ‖a is an arbitrary norm; it follows from the equiva-
lence of norms that such functions are locally polyhedral.
Intuitively, such functions represent “tracking” problems,
where we seek to get close to the point vt. Another im-
portant example is the class f(xt) = g(xt) + h(xt) where
g is locally polyhedral and h is an arbitrary non-negative
convex function whose minimizer coincides with that of g;
since f(xt) − f(vt) ≥ g(xt) − g(vt), f is also locally poly-
hedral. This lets us handle interesting functions such as
f(xt) = ‖xt‖1 + x′tQxt where Q is a positive semidefinite
matrix, or even f(Xt) = 2‖Xt‖∞ − log det (I +Xt) where
the decision variable Xt is a positive semidefinite matrix.

Let us now informally describe how the Online Balanced
Descent works. Online Balanced Descent is lazy : instead of
moving directly towards the minimizer vt, it moves to the
closest point which results in a suitably large decrease in
the hitting cost. This can be interpreted as projecting onto
a sublevel set of the current cost function. The trick is to
make sure that not too much switching cost is incurred in
the process. This is accomplished by carefully picking the
sublevel set so that the hitting costs and switching costs are
balanced. A formal description is given Algorithm 1. Note
that the memoryless algorithm proposed in [5] can be seen
as a special case of Algorithm 1 when the decision variables
are scalar.

Theorem 3. For every α > 0, there exists a choice of β
such that Algorithm 1 has competitive ratio at most 3 +
O(1/α) when run on locally α-polyhedral cost functions with
`2 switching costs. More generally, let ‖ · ‖ be an arbitrary
norm. There exists a choice of β such that Algorithm 1 has

competitive ratio at most max{k2,1}
min{k1,1}

(3 +O(1/α)) when run

on locally α-polyhedral cost functions with switching cost ‖·‖.
Here k1 and k2 are constants such that k1 ‖x‖ ≤ ‖x‖2 ≤
k2 ‖x‖.

We note that in the `2 setting Theorem 3 has a form
which is connected to the best known lower bound on the



Algorithm 1 (Primal) Online Balanced Descent

1: for t = 1, . . . , T do
2: Observe cost function ft, set vt = argminx ft(x).
3: if ‖xt−1 − vt‖ < βft(vt) then
4: Set xt = vt
5: else
6: Let x(l) = ΠΦ

Kl
t
(xt−1), increase l until

‖x(l)− xt−1‖ = βl. Here Kl
t is the l-sublevel

set of ft, i.e., Kl
t = {x | ft(x) ≤ l}, and ΠΦ denotes

projection under the mirror map Φ.
7: xt = x(l).
8: end if
9: end for

competitive ratio of memoryless algorithms. In particular,
[5] use a 1-dimensional example with locally polyhedral cost
functions to prove the following bound.

Proposition 4. No memoryless algorithm can have a com-
petitive ratio less than 3.
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