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1. INTRODUCTION
This paper studies the steady-state performance of load

balancing algorithms in many-server systems. We consider
a system with N identical servers with buffer size b− 1 such
that b = o

(√
logN

)
, in other words, each server can hold at

most b jobs, one job in service and b− 1 jobs in buffer. We
assume jobs arrive according to a Poisson process with rate
λN, where λ = 1−N−α for 0 < α < 0.5, and have exponen-
tial service times with mean one. We call the traffic regime
sub-Halfin-Whitt regime because α = 0.5 is the so-called the
Halfin-Whitt regime [9]. When a job arrives, the load bal-
ancer immediately routes the job to one of the servers. If
the server’s buffer is full, the job is discarded. We study
a class of load balancing algorithms, which includes join-
the-shortest-queue (JSQ), idle-one-first (I1F) [8], join-the-
idle-queue (JIQ) [11, 13] and power-of-d-choices (Pod) with
d = Nα logN [12, 15], and establish an upper bound on the
mean queue length. From the queue-length bound, we fur-
ther show that under JSQ, I1F, and Pod with d = Nα logN,
the probability that a job is routed to a non-idle server and

the expected waiting time per job are both O
(

logN√
N

)
, which

means only O
(

logN√
N

)
fraction of jobs experience non-zero

waiting or are discarded. For JIQ, we show that the proba-

bility of waiting is O
(

b
N0.5−α logN

)
.

Let Si denote the fraction of servers with at least i jobs
at steady state. In this paper, we prove that

E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
≤ 29b√

N logN
,

with k = 1 + 1
2(b−1)

, for a class of load balancing algorithms

that route an incoming job to an idle server with probability
at least 1 − 1√

N
when S1 ≤ λ + k logN√

N
. This result implies

that (i)

E

[
b∑
i=1

Si

]
≤ λ+

k logN√
N

+
29b√
N logN

,

i.e, the average queue length per server exceeds λ by at

most O
(

logN√
N

)
; and (ii) under JSQ, I1F, JIQ and Pod (d =

Nα logN), the probability that an incoming job is routed to
a non-idle server is asymptotically zero.

From the best of our knowledge, there are only a few pa-
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pers that deal with the steady-state analysis of many-server
systems with distributed queues [3, 1, 10]. [3, 1] analyze the
steady-state distribution of JSQ in the Halfin-Whitt regime
and [10] studies the Pod with α < 1/6. This paper comple-
ments [3, 1, 10], as it applies to a class of load balancing
algorithms and to any sub-Halfin-Whitt regime.

Similar to [3, 10], the result of this paper is proved us-
ing the mean-field approximation (fluid-limit approxima-
tion) based on Stein’s method. The execution of Stein’s
method in this paper, however, is quite different from [3,
10]. In our proof, a simple mean-field model (fluid-limit)

model
∑b
i=1 Ṡi = − logN√

N
is used to partially approximate

the evolution of the stochastic system when the system is
away from the mean-field equilibrium. This is because in
this paper, we are interested in bounding

E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
, (1)

i.e. when
∑b
i=1 Si ≥ λ + k logN√

N
> λ. Note that this sim-

ple mean-field model is not even accurate when
∑b
i=1 Si ≥

λ + k logN√
N

. However, using state-space collapse (SSC) ap-

proach based on the tail bound in [2], we show that the
generator difference is small. In the literature, SSC has
been used to show that the approximation error of using a
low-dimensional system is order-wise smaller than the queue
length (or some function of the queue length). Instead in this
paper, we show that the error is a fraction of the term (1),
but not negligible, with a high probability. We then deal
with this error by subtracting it from the term (1) without
bounding it explicitly. Furthermore, SSC is proved only in
the regime

∑b
i=1 Si ≥ λ + k logN√

N
, which turns out to be

sufficient and easy to prove. Pioneered in [14] (called drift-
based-fluid-limits (DFL) method) for fluid-limit analysis and
in [5, 4] for steady-state diffusion approximation, the power
of Stein’s method for steady-state approximations has been
recognized in a number of recent papers [14, 5, 17, 4, 18, 6,
7, 3]. This paper is another an example that demonstrates
the power of Stein’s method for analyzing complex queueing
systems.

2. MODEL AND MAIN RESULTS
Consider a many-server system withN homogeneous servers,

where job arrival follows a Poisson process with rate λN and
service times are i.i.d. exponential random variables with
rate one. We consider the sub-Halfin-Whitt regime such
that λ = 1−N−α for some 0 < α < 0.5. As shown in Figure



1, each server maintains a separate queue and we assume
buffer size b− 1 (i.e., each server can have one job in service
and b− 1 jobs in queue).
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Figure 1: Load Balancing in Many-Server Systems.

We study a class of load balancing algorithms which route
each incoming job to a server upon its arrival. Denote by
Si(t) the fraction of servers with queue length at least i at
time t. Under the finite buffer assumption with buffer size
b, Si = 0, ∀i ≥ b+ 1. Define S to be

S = {s | 1 ≥ s1 ≥ · · · ≥ sb ≥ 0},

and S(t) = [S1(t), S2(t), · · · , Sb(t)]. We consider load bal-
ancing algorithms such that S(t) ∈ S is a continuous-time
Markov chain (CTMC) and has a unique stationary distri-
bution, denoted by S, for any λ. Note λ, S(t) and S all
depend on N, the number of servers in the system. Let
A1(S) denote the probability that an incoming job is routed
to a busy server when the state of the system is S. Our main
result of this paper is the following theorem.

Theorem 1. Assume λ = 1 − N−α, 0 < α < 0.5, and
b = o(

√
logN). Under any load balancing algorithm such

that A1(S) ≤ 1√
N

when S1 ≤ λ+ k logN√
N

with k = 1+ 1
2(b−1)

,

the following bound holds when N is sufficiently large:

E

[
max

{
b∑
i=1

Si − λ−
k logN√

N
, 0

}]
≤ 29b√

N logN
.

Note that the condition A1(S) ≤ 1√
N

when S1 ≤ λ +
k logN√

N
implies that an incoming job should be routed to an

idle server with probability at least 1 − 1√
N

when at least
1
Nα
− k logN√

N
fraction of servers are idle. There are several

well-known policies that satisfy this condition.

• Join-the-Shortest-Queue (JSQ): JSQ routes an in-
coming job to the least loaded server in the system, so
A1(S) = 0 when S1 ≤ λ+ k logN√

N
.

• Idle-One-First (I1F): I1F routes an incoming job
to an idle server if available and else to a server with
one job if available. Otherwise, the job is routed to a
randomly selected server. Therefore, A1(S) = 0 when
S1 ≤ λ+ k logN√

N
.

• Join-the-Idle-Queue (JIQ): JIQ routes an incom-
ing job to an idle server if possible and otherwise,

routes the job to server chosen uniformly at random.
Therefore, A1(S) = 0 when S1 ≤ λ+ k logN√

N
.

• Power-of-d-Choices (Pod): Pod samples d servers
uniformly at random and dispatches the job to the
least loaded server among the d servers. Ties are bro-
ken uniformly at random. When d = Nα logN, A1(S) ≤
1√
N

when S1 ≤ λ+ k logN√
N

.

A direct consequence of Theorem 1 is asymptotic zero
waiting. Let WN denote the event that an incoming job
is routed to a busy server in a system with N servers, and
pWN denote the probability of this event at the steady-state.
Let BN denote the event that an incoming job is blocked
(discarded) and pBN denote the probability of this event at
the steady-state. Furthermore, let WN denote the waiting
time of a job (when the job is not dropped). We have the
following results based on the main theorem.

Corollary 1. Assume λ = 1 −N−α, 0 < α < 0.5, and
b = o

(√
logN

)
. For sufficiently large N, we have

• Under JSQ, IF1, and Pod with d = Nα logN,

E [WN ] ≤ 3 logN√
N

, and pWN ≤
4 logN√

N
.

• Under JIQ,

pWN ≤
30b

N0.5−α logN
.

The proof of this lemma is a simple application of the Markov
inequality, which can be found in [10].

We next provide an overview of the proof of our main the-
orem. The details are presented in [10]. The proof is based
on Stein’s method. As modularized in [4], this approach in-
cludes three key ingredients: generator approximation, gra-
dient bounds and state space collapse (SSC).

Define ei to be a b-dimensional vector such that the ith
entry is 1/N and all other entries are zero. Furthermore,
define Ai(S) to be the probability that an incoming job is
routed to a server with at least i jobs. For convenience,
define A0(S) = 1 and Ab+1(S) = B(S), where B(S) is the
probability that an incoming job is discarded. Let G be the
generator of CTMC S(t). Given function g : S → R, we
have

Gg(S) =

b∑
i=1

λN(Ai−1(S)−Ai(S))(g(S + ei)− g(S))

+N(Si − Si+1)(g(S − ei)− g(S))

For a bounded function g : S → R,

E[Gg(S)] = 0.

Following the framework of Stein’s method, the first step
of our proof is generator approximation. We propose a sim-
ple, almost trivial, generator L such that

Lg(s) = g′(s)

(
− logN√

N

)
,

and assume g(s) is the solution of the following Stein’s equa-
tion (also called Poisson equation):

Lg(s) = g′(s)

(
− logN√

N

)
= h(s).



Following Stein’s method, we bound E[h(s)] by studying
generator difference between L and G :

E[h(S)] =E[Lg(S)−Gg(S)] = E[g′(S)

(
− logN√

N

)
−Gg(S)]

=E

[
g′(S)

(
λB(S)− λ− logN√

N
+ S1

)
+

c

N
g′′(S)

]
for some constant c > 0. The second term can be bounded by
using the gradient bound on g′′(s), which has a very simple
form and is almost trivial to calculate. The first term is
bounded based on SSC in the regime

∑b
i=1 Si ≥ λ+ k logN√

N
,

where a key step is to show that(
λ+

logN√
N
− S1

)
I∑b

i=1 Si>λ+
k logN√

N
+ 1
N

(2)

is O
(

logN√
N

)
. The intuition is that when the average number

of jobs per server (
∑
i Si) exceeds λ by k logN√

N
+ 1

N
, the

fraction of busy servers should be close to or exceed λ under
a good load balancing algorithm. We prove this result by
using the following Lyapunov function

V (s) = min

{
b∑
i=2

si, λ+
k logN√

N
− s1

}
,

and establishing the following Lemma

Lemma 1. For sufficient large N, we have

OV (s) ≤ − 1

2(b− 1)

logN√
N

+
1√
N
,

for any s such that V (s) ≥ logN√
N

.

Based on the lemma above, we can obtain a tail bound on
V (S) by applying the result in [2, 16], which results in an
upper bound on (2) and further prove the main theorem.
Readers can find the details in [10].

3. CONCLUSION
In this paper, we studied the steady-state performance

of a class of load balancing algorithms for many-server (N
servers) systems in the sub-Halfin-Whitt regime. We estab-
lished an upper bound on the expected queue length with
Stein’s method and studied the probability that an incom-
ing job is routed to a busy server under JSQ, I1F, JIQ, and
Pod.
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