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ABSTRACT
We consider the problem of allocating requesters of analytic
tasks to resources on servers. We assume both requesters
and servers are placed in a one dimensional line: [0,∞) ac-
cording to two different Poisson processes with each server
having finite capacity. Requesters communicate with the
servers under a noninterference wireless protocol. We con-
sider a “Move to Right” (MTR) request allocation strategy
where each requester is allocated to the nearest available
server to its right. We start our analysis from a single re-
source per request scenario where each requester demands a
single computational resource. We map this scenario to an
M/M/1 queue or a bulk service M/M/1 queue depending on
the capacity of the servers. We compare the performance
of the strategy with the globally optimal strategy taking
“expected distance traveled by a request” (request distance)
as performance metric. Next, we extend our analysis to
two resources per request scenario. We show that it can
be transformed into an equivalent fork-join queue problem.
Numerical results are presented to validate the claim.

1. INTRODUCTION
Past few years have witnessed a significant growth in the

use of distributed network analytics involving agile code,
data and computational resources. In many of such net-
works, for example, Internet of Things (IoT) [3], a large
number of computational and storage resources are widely
distributed in the physical world. Thus the spatial distribu-
tion of resources plays an important role in determining the
overall performance of the analytics network.

In a distributed analytics network, the requesters gener-
ating analytic tasks and the servers providing services to the
tasks are distributed over a geographic region. We collec-
tively term the requesters and the servers as “devices”. Each
analytic task may require a set of resources: computation,
code and data resources to achieve computation objectives.
The resources are placed on physical devices. For success-
ful completion of each analytic task, an algorithm needs to
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execute the following functions [4]: (i) Placement of com-
puting resources: i.e. basically determining which devices
would perform the computation for the analytic task. (ii)
Retrieval of data/code resources: The retrieval may involve
communicating with the requesters that provide data/code
directly or with the data/code servers that store them. (iii)
Single/Multi-hop routing: which involves transferring the
data/code through the network to the computing devices.
(iv)Handling limited computational capacity: As the com-
putational devices may have limited capacity, a viable al-
gorithm should correctly place the computing resources on
devices adhering to the capacity constraints.

In this work, we consider the placement of requesters and
servers in a geographic region defined by a one dimensional
line L : [0,∞). The requesters and servers are placed ac-
cording to two different Poisson processes. We assume any
communication between the devices involves non-interfering
single hop wireless transmission, also known as Direct trans-
mission model in the literature [2]. We focus on analyzing
the following two scenarios.

First, we consider the single resource scenario: In this
case, we place the computing resources on servers according
to “Move to Right” (MTR) request allocation strategy i.e.
the geographically nearest available server to the right of
the requester is allocated to the analytic task. We assume
requesters provide on spot data and code for computation
to the selected servers over a wireless channel. We find that
the single resource scenario can be modeled as an M/M/1
or a bulk service M/M/1 queue depending on the capacity
of the servers where capacity denotes the maximum number
of requests that can be served by a server. We relate the
“expected distance traveled by a request” (request distance)
in the analytic network to the expected sojourn time for
the corresponding queuing model . Using request distance
as the performance metric, we compare MTR strategy to a
globally optimal strategy.

Second, we consider the two resource scenario: Here, we
place the computing resources on the requesters while the
retrieval involves communicating with two sets of servers:
the data servers and the code servers. We assume both
data and the code servers are distributed over L according
to a single homogeneous Poisson process. We also assume
that due to interference and large data and code size, the
data and code servers can only serve one request. Again we
find that this scenario can be transformed into an equiva-
lent fork-join queue problem. We validate our claim with
numerical experiments.



2. SINGLE RESOURCE SCENARIO

Figure 1: Poisson Placement of requesters and
servers on the 1-D network with server capacity of
one.

Consider a set of requesters R requesting analytics tasks
of equal computation requirements and a set of computation
servers S that can execute these requests. Assume that each
server j ∈ S has an execution capacity Cj ∈ Z+ measured
in units of number of tasks being processed at the time.
Suppose that requesters and servers are located in space L̂
equipped with a distance measure. Formally, let r : R → L̂
and s : S → L̂ be the location functions for requesters and
servers, respectively, such that a distance measure dL̂(r, s)
is well defined for all pairs (r, s) ∈ R × S. In this section

we examine the scenario where L̂ = R+ = L (say), i.e., the
positive real line and for the case where the locations of the
requesters: {r(i)|i ∈ R} and the locations of the servers:
{s(j)|j ∈ S} are Poisson distributed with different densi-
ties. We also assume that all servers have equal execution
capacities i.e. Cj = c ∀j ∈ S.

Let λ be the requester density and µ the server density.
The MTR rule for assigning requesters to servers is illus-
trated in Figure 1 where starting from the left requests are
assigned to the closest available server on the right. Let
di, i ∈ R denote the distance between requester i and the
server serving the requester. Last, define Nx to be the num-
ber of requests that traverse through point X ∈ L as shown
in Figure 1. We primarily focus on deriving request distance
for each request. We first focus on the case where each server
has unit capacity i.e. c = 1.

2.1 Server capacity: c =1
When server capacity is one, the analytics network can

be modeled as an M/M/1 queue. An M/M/1 queue con-
sists of a single server with customer arrivals described by
a Poisson process and customer service times by an expo-
nential distribution. Thus the distance between two consec-
utive requesters in the analytics network can be thought
of as inter-arrival time between customers in an M/M/1
queue. Similarly the distance between consecutive servers
corresponds to a customer service time. In the analytics net-
work, random variable di corresponds to the sojourn time
of the ith customer in the M/M/1 queue and Nx denotes
the expected number of customers in the queue at time in-
stant X. If λ < µ, then di converges to a random variable
d ∼ exponential(µ− λ) and Nx converges to a random vari-
able N ∼ geometric(1−λ/µ). Thus we can evaluate request
distance as

E[d] =
1

µ− λ . (1)

2.2 Server capacity: c >1
When the server capacity is more than one, the analyt-

ics network maps to a bulk service M/M/1 queue. A bulk

Figure 2: State space diagram for server capacity c
with c > 1.

service M/M/1 queue provides service to a group of c cus-
tomers. The server serves a bulk of at most c customers
whenever it becomes free. The service time for the group
is exponentially distributed and the customer arrivals are
determined by a Poisson process. Thus similar to the previ-
ous case, the distance between two consecutive requesters in
the analytics network can be thought of as inter-arrival time
between customers in the bulk service M/M/1 queue. How-
ever, the distance between two consecutive servers should
be mapped to a bulk service time.

Having established an analogy between the analytics net-
work and the bulk service M/M/1 queue, we now define the
state space for the analytics network. Consider the defini-
tion of Nx as the number of requests that traverse through
point X ∈ L under MTR strategy. In steady state, Nx con-
verges to a random variable N provided λ < cµ. Let πk
denote Pr[N = k] where k = 0, 1, . . .. The state space dia-
gram for such a system is shown in Figure 2. Thus we have
the following balance equations similar to that of a bulk
service M/M/1 queue [5].

(λ+ µ)πk = µπk+c + λπk−1, k ≥ 1,

λπ0 = µ(π1 + π2 + . . .+ πc). (2)

By taking the z-transform and following the procedure
in [5], we obtain the steady state probability vector π =
[π0, π1, . . .]. By applying Little’s formula, we obtain the fol-
lowing expression for the request distance.

E[d] =
r0

λ(1− r0)
, (3)

where r0 is the only root in the interval (0, 1) of the following
characteristic equation (with r as the variable).

µrc+1 − (λ+ µ)r + λ = 0. (4)

2.3 Optimal allocation strategy
Next we consider formulating the optimal request alloca-

tion strategy for the analytics network taking request dis-
tance as metric. The objective is to find a function π : R→
S, neither necessarily injective nor surjective, such that the
following is satisfied.

arg min
π

∑
i∈R

dL(r(i), s(π(i))) (5)

s.t.
∑
i∈R

1π(i)=j ≤ Cj , ∀j ∈ S

The above capacity-constrained assignment problem can
be modeled as a min-cost (single commodity) flow problem
on a directed graph G = (V,E), where V = R∪S ∪{DR}∪
{DS}, where DR is a dummy requester node and DS is
a dummy server node (note that this formulation allows a
node to be both a requester and a server), and E = R×S ∪
{DR} × R ∪ S × {DS}. Assign capacities and costs to all
edges e ∈ E as follows:

1. For e ∈ {DR} ×R : ce = 1, we = 0



λ µ c dmtr dopt dopt/dmtr
0.9 1 1 10 4.11 0.41
0.9 1 2 1.48 0.6694 0.46
0.9 1 500 1 0.5011 0.5011

Table 1: Comparison of MTR and optimal allocation
strategy where dmtr and dopt are the request distance
in MTR (Equations (1) and (3)) and optimal strategy
under single resource scenario.

2. For e = (j,DS), j ∈ S : ce = Cj , we = 0

3. For e = (i, j) ∈ R× S : ce = 1, we = dL(r(i), s(j)

Assign flow variables xe ∈ R to each edge e ∈ E. The
assignment problem of (5) corresponds to a min-cost flow
problem where xe obeys flow capacity constraints xe ≤ ce
and flow conservation laws at each node in G, i.e., ∀v ∈
V,

∑
u:u∈N in

v
x(u,v) =

∑
w:w∈Nout

v
x(v,w), where N in

v denotes

the set of incoming neighbors of v and N out
v denotes the set

of outgoing neighbors of v.
This minimization problem can be solved by obtaining a

solution to the min-cost flow problem after assigning de-
mands to dummy variables as follows: demDR = −|R|,
demDS = |R|. The rest of the nodes are assigned zero de-
mand, i.e., demv = 0,∀v ∈ V \ ({DR}∪ {DS}). Well-known
polynomial time solutions exist for this problem, such as
the network simplex algorithm with time complexities of
O(|R|6 log |R|) [7]. Moreover, since the edge capacity values
ce and demands are integral, by the flow integrality theo-
rem [1], the optimal flow values xe will also be integral even
if the edge costs we are real-valued. Exploiting this property
and the fact that the capacities of all edges in {DR}×R and
R× S are one, we get a valid 0-1 integral assignment to the
corresponding flow variables xe. That is, each request in
R gets sent (assigned) to exactly one server in the optimal
solution. Note that when server capacities Cj are all one,
this degenerates to a minimum-weight matching problem on
a weighted bipartite graph.

2.4 Performance Comparision
We compare the performance of MTR strategy with the

optimal strategy obtained by solving optimization problem
(5). We consider a collection of 500 requesters and 500
servers i.e. |R| = |S| = 500 and the results are presented
in Table 1. The MTR strategy delivers performance close
to a factor 2 of the optimal strategy. We also observe an
increase in the performance of MTR strategy by increasing
the server capacity c. Thus we have the following conjecture.

Conjecture 1. Under identical conditions, the optimal
to MTR approximation ratio, dopt/dmtr, increases with an
increase in the capacity c of the servers .

3. EXTENSION TO TWO RESOURCES
Now consider the following scenario where requesters re-

quest two resources, say data and code, which can reside
on different servers. Let µ1 and µ2 be the densities of the
data and code servers respectively. We again consider the
MTR request allocation strategy. The analytics network,
in this case, can be modeled as a two queue fork-join sys-
tem [6]. In such a queue, each incoming job is split into two
sub-jobs each of which is served on one of the two servers.
After service, each sub-job waits until the other sub-job has

λ µ c dexp dth
1 2 1 1.4358 1.4375

0.9 1 1 14.00 13.875

Table 2: Experimental results for homogeneous two
resources scenario where dexp and dth are the exper-
imental and theoretical request distance.

been processed. They then merge and leave the system. In
the analytics network as well, each request forks two sub-
requests one for data and the other for the code resource. A
request is said to be completed only if it has retrieved both
the resources, thus mapping it to a fork-join queue. We de-
fine the overall request distance to be the maximum value
among data request distance and code request distance. Be-
low we discuss a special scenario of data and code servers
having the same density.

3.1 Identical service rates (µ1 = µ2µ1 = µ2µ1 = µ2)
The approximated request distance for this scenario is ob-

tained from the expression for the expected sojourn time of
a fork join queue with homogeneous servers as [6]:

E[d] =
12µ− λ

8µ(µ− λ)
. (6)

We compare the experimental and theoretical values of
request distance for a set of |R| = |S| = 106 devices in Ta-
ble 2. The experimental results match with the theoretical
results (obtained from Equation (6)).

4. CONCLUSION
We proposed a queuing theoretic model for analyzing the

behavior of resource allocation in a one dimensional dis-
tributed analytics network. We studied two specific scenar-
ios: single and two resources scenarios and mapped them to
the corresponding queuing model. We also formulated the
optimal request allocation strategy taking request distance
as metric. Going further, we aim to extend our results in two
ways. First we would like to extend the analysis for MTR
strategy to a two dimensional geographic region. Second we
would also consider analyzing different request allocation
strategies such as move to right or left.
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