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ABSTRACT
We consider a stochastic queueing system modelling the
behaviour of a wireless network with nodes employing a
discrete-time version of the standard decentralised medium
access algorithm. The system is unsaturated – each node
receives an exogenous flow of packets at the rate λ packets
per time slot. Each packet takes one slot to transmit, but
neighbouring nodes cannot transmit simultaneously. The
algorithm we study is standard in that: a node with empty
queue does not compete for medium access; the access pro-
cedure by a node does not depend on its queue length, as
long as it is non-zero. Two system topologies are considered,
with nodes arranged in a circle and in a line. We prove that,
for either topology, the system is stochastically stable un-
der condition λ < 2/5. This result is intuitive for the circle
topology as the throughput each node receives in a satu-
rated system (with infinite queues) is equal to the so-called
parking constant, which is larger than 2/5. (This fact, how-
ever, does not help to prove our result.) The result is not
intuitive at all for the line topology as in a saturated system
some nodes receive a throughput lower than 2/5.
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1. INTRODUCTION
In this paper we consider a stochastic queueing model,

primarily motivated by the MAC (Medium Access Control)
protocols (algorithms) in wireless networks. The model in
this paper corresponds to those MAC protocols that prevent
neighbours from transmitting simultaneously, thus making
any collision and loss of packets impossible. We focus on the
single-hop wireless networks, where each generated packet
only needs to be transmitted once, by its source node (where
the packet was generated).

We are interested in (stochastic) stability of a network, i.e.
the ability of all nodes in the network to transmit packets,
without the packet queues building up to infinity. If an ac-
cess algorithm guarantees stability as long as such is in prin-
ciple possible, it is called maximally stable (or throughput-
optimal). The celebrated MaxWeight (or, BackPressure)
algorithms, originated in [9] and later much extended and
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generalised, are known to be maximally stable. However,
MaxWeight algorithms are centralised, in that they need a
central controller to know the states of the queues of all
nodes and then to solve an (often hard) optimisation prob-
lem to make every access control decision. This makes a
practical use of MaxWeight difficult or infeasible in large
networks. There has been therefore a need for the decen-
tralised algorithms where each node regulates its own access
to the medium.

A well-known and widely used (most notably in IEEE
802.11) example of a decentralised MAC algorithm prevent-
ing collisions is the CSMA (Carrier Sense Multiple Access)
protocol. It represents a type of multiple access which we
will refer to as standard CSMA, where ‘standard’ refers to
the following properties: (a) each node does not know (and
does not try to explicitly learn) its neighbours, (b) the ac-
cess procedure is same regardless of the node queue length,
as long as it is non-zero, and (c) the node does not access
the channel when its queue length is zero (i.e., no packets to
transmit). Most results on networks governed by the stan-
dard CSMA protocol assume that the system is saturated,
i.e. each node is assumed to always have packets to trans-
mit, and the question of interest is the throughputs of the
nodes. See e.g. [2] and references therein for this type of
work.

In practice the systems are unsuturated, i.e. the nodes
“receive” a random process of generated packets and thus
do not always compete for medium. Such unsaturated sys-
tems may not be approximated by saturated ones, or even
bounded by them. For example, if one exchanges an unsatu-
rated node for a saturated one, this will be detrimental to the
performance of the node’s neighbours but beneficial for the
neighbours’ neighbours (with whom the original node does
not interfere). In other words, the random process describ-
ing such a system does not have the monotonicity property.
Monotonicity, informally speaking, means that two versions
of the process, with initial state of one dominating that of
the other, can be coupled so that this dominance relation
persists at all times. The absence of monotonicity dramati-
cally complicates the process analysis, including establishing
stability conditions. It is also impractical in applications to
keep a device accessing the network if it does not have pack-
ets to transmit. (Hence property (c) of a standard CSMA is
important.) The analysis of general unsaturated networks is
extremely difficult, because, primarily due to lack of mono-
tonicity, the queue dynamics and transmission schedule of
any node depends on the states of all other nodes, in a very
complicated manner.



Very few results are known for unsaturated systems. For
example, in [10] the authors consider a continuous-time model
and study the question of stability. They demonstrate with
an example that the condition that the arrival intensity for
each node is smaller than the throughput of the node in the
saturated system is not sufficient for stability. This means,
in particular, that standard CSMA does not achieve maxi-
mum stability. The absence of maximal stability of the stan-
dard CSMA protocol led to the development, starting with
[3], of queue-based algorithms where the access procedure
of a node depends on its own queue length. In particular,
an algorithm of this type was proposed in [5], which guaran-
tees maximal stability for single-hop systems on any graph.
However, the queue-based algorithms are known to lead to
high delays. (Hence, property (b) of a standard CSMA is
important).

In this paper, our goal is to characterise the performance
of a standard CSMA algorithm. We would like to stress
again that standard CSMA algorithms are important, be-
cause they are decentralised (and therefore easy to imple-
ment), because implementing a queue-based scheme leads
to long delays, and because it is impractical in the unsatu-
rated situation to keep all nodes active at all times.

2. FORMAL MODEL AND MAIN RESULT
Our formal model is as follows. We consider two ver-

sions of a simple single-hop system, consisting of N nodes,
indexed i = 1, . . . , N , arranged in a circle or in a line, re-
spectively. The systems operate in discrete time, with unit
time slots. The exogenous arrival process (of packets) at
each node is i.i.d. with mean λ. To model standard CSMA
in discrete time, we will assume that at the beginning of
each time slot the nodes are given access priorities, forming
a permutation of numbers 1, . . . , N , picked independently
(across time slots), uniformly at random from all possible
permutations. The node with the highest priority transmits
in this slot if its queue is non-empty. The node with the
second-highest priority transmits in the slot if its queue is
non-empty and if none of its neighbour nodes is transmit-
ting. And so on until all nodes are checked in their priority
order. Each transmission takes one slot, so at the begin-
ning of the next time slot no transmission is ongoing, and
the medium access process is repeated independently. Note
that this algorithm is easy to implement in a decentralised
fashion, with an arbitrarily small loss in throughput (see
[7]). Denote by Qi(n) the queue length at node i at time
n. Then, Q(n) = (Qi(n)), n = 0, 1, 2, . . ., is a countable
Markov chain. The system (stochastic) stability is under-
stood as positive recurrence of Q(·). We are interested in
the stability conditions.

If we consider the circle system, if all nodes have non-
empty queues, then by symmetry the average service rate
(the expected number of transmissions per slot) is the same
for all nodes and is equal to the so-called parking constant
(sometimes referred to as jamming density), which we de-
note by cp(N). Therefore, if λ exceeds cp(N), the system
is unstable. The parking constant cp(N) is equal to 1/2
if N = 4, 2/5 if N = 5 and it decreases over even values
of N and increases over odd values of N to the same limit
1/2(1− e−2) ≈ 0.4323. On the other hand, each non-empty
node always transmits if its priority is higher than the prior-
ities of both its neighbours, which happens with probability
1/3. Therefore λ < 1/3 trivially leads to stability. One

of the goals of our work is to study how close the stability
region of the standard CSMA algorithm on a circle is to
λ < cp(N) (the best possibly achievable for this algorithm).
The main result of the paper for the circle topology is
that, under the standard CSMA, λ < 2/5 leads to stability
for a system with N ≥ 4. We conjecture that λ < cp(N) is
sufficient for stability, but this is not proved.

It appears to be a lot more difficult to conjecture the sta-
bility condition for a system on a line. If all nodes have non-
empty queues, then the process of transmission scheduling
in a slot is again equivalent to the discrete parking problem,
but in this situation the expected number of transmissions
differs from node to node. For instance, the nodes on the
edges will have transmission probabilities larger than 1/2
and tending to 1− e−1 ≈ 0.6321 as N →∞, but the nodes
right next to them will have much lower transmission proba-
bilities tending to e−1 ≈ 0.3679 (see [6]). Our main result
for the line topology is that, just like for the circle system,
λ < 2/5 leads to stability for a system with N ≥ 4. This
result is not intuitive at all, given that in the saturated sys-
tem the transmission probability of the second node from
the edge is strictly less than 2/5 (see above). The result
also stresses once again that the saturated system does not
provide a bound for the unsaturated one, that it is unrea-
sonable to make all nodes (including empty) to compete for
the transmission at all times, and that it is important to
study unsaturated systems.

To summarise, the main result of this paper is

Theorem 1. The system with either the circle or line
topology, and N ≥ 4, is stable if λ < 2/5.

Remark 2. Consider the unsaturated circle system, but
the access protocol is modified so that all nodes compete
for transmission at all times, even when they are empty.
Such a system is then trivially stable under the condition
λ < cp(N), because the average service rate received by each
node is exactly cp(N) as long as the node is occupied. (This
fact also does not imply our Theorem 1 for the circle sys-
tem and does not help to prove it.) Therefore, the modified
protocol is maximally stable when all nodes receive arrivals
at the same rate λ. One may ask: Isn’t the modified pro-
tocol then “better” than the standard CSMA that we study?
The answer is: Yes, it might be, if it is known in advance
that the system topology is a circle and if the arrival rates
are equal. Our goal, however, is to study properties of a
protocol, under which each node is completely unaware of
the rest of the system – in this case making each node to
compete for the channel at all times (even when empty) is
clearly a “bad” approach, because often only a small fraction
of network nodes have any traffic to transmit.

Theorem 1 is proved using the fluid limit technique. The
main difficulty in the proofs consists in dealing with situa-
tions when some of the queues of a fluid limit are at zero.
One has to study rather complicated structure of the occu-
pancy and activation processes of a neighbourhood of non-
zero queues. We believe that the technique we developed
may be used to study the behaviour of CSMA and similar
decentralised algorithms on more complicated topologies.

3. DISCUSSION OF THE PROOF
The proof of Theorem 1 is quite technical. Due to space

limitation, here we only present a discussion, highlighting
the key difficulties. The complete proof is in [7].



Let us discuss the proof for the circle topology, to be
specific. It uses the fluid limit technique [4, 1, 8]. Re-
call that the process fluid limit is, informally speaking, a
process q(t) = (qi(t)), t ≥ 0 arising as an appropriate
limit of a sequence of rescaled processes Qr(rt)/t, t ≥ 0,
with the initial norm ‖Qr(0)‖ =

∑
iQ

r
i (0) = r increasing

to infinity. To prove stability it is sufficient to show that
every trajectory q(·) of the fluid limit, with initial norm
‖q(0)‖ =

∑
i qi(0) = 1, reaches 0 within a finite time.

To prove the latter, we show that there exists ε > 0 such
that for any fluid limit trajectory, at any regular point t
such that

∑N
i=1 qi(t) > 0,

∑N
i=1 q

′
i(t) ≤ −ε. (A time point t

is regular if the derivatives q′i(t) for all i exist. Almost all
points t are regular.)

The case when all qi(t) > 0 is relatively easy. Indeed,
this case corresponds to the situation when all queues of the
original process are continuously occupied and, therefore,
each of them receives the service at the average rate equal to
the parking constant cp(N). This implies q′i(t) = λ− cp(N),
and it is not hard to show that cp(N) ≥ 2/5 for N ≥ 4.

The main difficulty is to deal with states q(t) in which
qi(t) = 0 for some queues i. (And this, in turn, stems pri-
marily from the non-monotonicity of the process. For exam-
ple, we cannot claim that the derivatives of positive qi(t) are
dominated by the derivatives in the state where all qi > 0.)
In this case, a group of nodes (k+1, k+2, . . . , k+l) such that
qk(t) = qk+l+1(t) = 0 and qk+i(t) > 0 for all i = 1, . . . , l, we
will call a positive group of size l. (Node indices i and N + i
correspond to the same node i, when nodes arranged in a
circle.) We prove that

l∑
i=1

q′k+i(t) < −ε1, (1)

for any positive group (k+1, k+2, . . . , k+ l), for some fixed
constant ε1 > 0.

To prove (1) we consider four cases separately, l = 1, 2, 3
and l ≥ 4. The case l = 1, when the positive group con-
sists of the single node k + 1, is the most difficult. Indeed,
q′k+1(t) depends on the joint occupancy distribution of all
other nodes i 6= k, in the process “local steady-state” de-
fined by the condition that node k + 1 is continuously oc-
cupied. Such a steady-state is very hard to characterise
exactly, and we derive quite intricate estimates based on
considering a neighbourhood of node k+ 1 of up to 3 nodes
on each side. In the case l = 2, we obtain a required esti-
mate of q′k+1 + q′k+2, which is based on considering nodes
k, k + 1, k + 2; this estimate in fact applies to any pair of
nodes at either edge of a positive group. In the case l = 3,
we obtain an estimate of q′k+1 + q′k+2 + q′k+3, based on con-
sidering nodes k+ 1, k+ 2, k+ 3. In the case l ≥ 4 we apply
the estimates obtained for l = 2 to the two pairs of nodes,
(k+ 1, k+ 2) and (k+ l− 1, k+ l), which are at the edges of
the positive group; then we additionally derive a universal
negative upper bound on q′i(t) which applies for any i at
the distance at least 3 (including itself) from the edge of a
positive group.

4. FUTURE WORK
We are currently also working on more difficult multi-hop

networks where each message has a source and a destination
and may therefore need to be transmitted by several nodes
in the network. For a line we consider traffic arriving at node

1 and requiring to reach node N . Each message thus needs
to be transmitted by every node in turn. We are interested
in stability and end-to-end throughput of the system.

For a circle one can define a multi-hop network in, for
instance, the following way. Fix a constant m ≥ 1 and
assume that each node gets on average λ/m new packets per
time slot. Assume that medium-access competition is done
in the same way as for the single-hop system but, upon a
successful transmission from node i, a message leaves the
system with probability 1/m and goes to the queue of node
i + 1 with probability 1 − 1/m. It is easy to show that
the average nominal traffic load for any node is λ and we
conjecture that λ < cp(N) is sufficient for stability for any
m ≥ 1. As m→∞ and N →∞ the model on a circle may
serve as an approximation for the behaviour of a large line
segment far away from source.

We can in fact prove the above multi-hop stability conjec-
ture for N = 4, but this proof heavily relies on the 4-node
structure and does not generalise to larger values of N . Sta-
bility for all N and all m ≥ 1 is a challenging and exciting
question for further study.
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