
Fair Allocation of Heterogeneous and Interchangeable
Resources

Xiao Sun1, Tan N. Le1, Mosharaf Chowdhury2, and Zhenhua Liu1

1Stony Brook University, NY, E-mail:{xiao.sun, tan.le, zhenhua.liu}@stonybrook.edu

2University of Michigan, MI, E-mail: mosharaf@umich.edu

Abstract
Motivated by the proliferation of heterogeneous processors
such as multi-core CPUs, GPUs, TPUs, and other accel-
erators for machine learning, we formulate a novel multi-
interchangeable resource allocation (MIRA) problem where
some resources are interchangeable. The challenge is how to
allocate interchangeable resources to users in a sharing sys-
tem while maintaining desirable properties such as sharing
incentive, Pareto efficiency, and envy-freeness. In this paper,
we first show that existing algorithms, including the Dom-
inant Resource Fairness used in production systems, fail to
provide these properties for interchangeable resources. Then
we characterize the tradeoff between performance and strate-
gyproofness, and design the Budget-based (BUD) algorithm,
which preserves Pareto efficiency, sharing incentive and envy-
freeness while providing better performance over currently
used algorithms.

1. INTRODUCTION
Cloud computing jobs need multiple types of resources.

For instance, tasks in a MapReduce job require a minimum
amount of CPU, memory, disk, and network bandwidth to
make progress. Unlike traditional single-resource allocation
algorithms that focus on only CPUs or network bandwidth, a
multi-resource allocation algorithm simultaneously allocates
more than one resource among jobs from different users. For-

mally, a demand vector
−→
dk = 〈d1k, d2k, . . . , dnk 〉 denotes user-

k’s demands on n resources, where dik ≤ 1 represents her
demand on the i-th resource normalized by the resource

capacity. We further scale
−→
dk to make her dominant re-

source maxj d
j
k = 1. The progress αk of user-k is defined

as αk = mini

{
ai
k

di
k

}
(Leontief production function), where

aik ≤ 1 represents user-k’s allocated fraction on resource-i.
Among existing multi-resource allocation algorithms, the

Dominant Resource Fairness (DRF) [2] and its variants [1]
are probably the most widely-used, e.g., in Apache YARN
and Spark. DRF extends the max-min fairness from single
resource to the multi-resource allocation. Specifically, it allo-
cates resources proportionally to their demand vectors, i.e.,
−→ak = αk ·

−→
dk and equalizes αk among all users. DRF guar-

antees desirable properties such as sharing incentive, strate-
gyproofness, envy-freeness, Pareto efficiency, among others.

Consider a simple system with CPUs and memory as re-

sources. There are two users with demands
−→
d1 = 〈1, 1

8
〉

and
−→
d2 = 〈 1

2
, 1〉. This means user-1’s dominant resource

is CPU, and for each fraction of CPU, 1/8 fraction of mem-

Copyright is held by author/owner(s).

ory is needed to make full progress. Similarly, memory is the
dominant resource for user-2, where 1/2 fraction of CPU is
needed for each fraction of memory allocated. DRF allocates−→a1 = 〈 2

3
, 1
12
〉 and −→a2 = 〈 1

3
, 2
3
〉 and α1 = α2 = 2

3
. Note that

this progress is significantly higher than the 1
2

under equal
sharing of the resources.

s-linear l-linear BLSTM Alexnet VGG16

workloads

10
-2

10
0

10
2

10
4

s
p
e
e
d
u
p
 r

a
te

s
 

Figure 1: Jobs have distinct efficiencies in utilizing GPU.
The speedup rates are ratios between job completion time
using one CPU core and that using one GPU.

Other allocation algorithms such as Competitive Equilib-
rium from Equal Incomes (CEEI) and asset fairness fail to
provide some key properties in multi-resource allocation. In
particular, CEEI requires market clearance, which cannot be
achieved under Leontief production function.

There is another dimension of complexity being overlooked:
multiple devices can actually be used in an interchangeable
way to fulfill the same resource demand. In particular, both
CPUs and GPUs can be used for the computation. Gener-
ally speaking, CPU is more efficient for complicated com-
putations but it has a limited number (10s) of threads. In
contrast, GPU is used primarily for highly parallelized (thou-
sands of cores per GPU), simple computations. GPUs are
becoming popular for machine/deep learning, massive data
mining, etc. Google even developed a specialized FPGA-
based processor TPU for its AlphaGo AI system.

The key challenge is that different types of jobs may have
distinct speedup rates from GPUs. Figure 1 illustrates our
results from real experiments using both simple workloads
such as linear regression and standard machine learning bench-
marks. While GPU is very efficient in accelerating applica-
tions such as VGG16, AlexNet and l-linear, it is not suitable
for other applications such as s-linear and BLSTM.

Our contributions are three-fold. Motivated by obser-
vations on real systems, we first formulate a new Multi-
Interchangeable Resource Allocation (MIRA) problem. Then
we uncover the hard tradeoff between desirable properties in
MIRA and inefficiencies of existing solutions. Finally, we



design the Budget-based Algorithm that preserves desirable
properties and outperforms existing solutions.

2. MODELING
The interchangeable resource allocation is denoted by the

quadruple (N,Q,E,D). N = {1, 2, · · · , n} denotes the set of
users. Q = {r11, . . . , r1M1

, r21, . . . , r
2
M2
, . . . , rq1, . . . , r

q
Mq
} is the

set of resources, which is categorized into q interchangeable
pools, e.g., computation, storage, networking. For the j-th
pool, there are Mj types of resources within the pool that are
interchangeable. The system has M =

∑q
i=1Mi resources

in total. E = {e1, e2, . . . , en}, where each ei is an M ×
M matrix with elements ei(x, y) representing the relative
efficiency of resource-x compared to resource-y if they are
interchangeable and is set to be zero otherwise. Finally, D =

{
−→
d1,
−→
d2, . . . ,

−→
dn} represents the set of demands.

−→
di is a q-

vector where dij representing user i’s demand on the j-th
resource pool, e.g., computation.

Consider a simple example with M = 3 resources: CPU,
GPU and memory. The system has 6 CPUs, 4 GPUs, and
40 GB memory. There are q = 2 pools, one of computation
and one of storage, where CPUs and GPUs are in the first
pool and they are interchangeable. Two users arrive at the
system with demand vectors on computation and storage:−→
d1 = 〈1/4, 1〉 means that User 1 needs 1/4 unit of compu-

tation (measured in CPU) for each unit of memory;
−→
d2 =

〈1, 1/16〉 means that User 2 needs 1/16 unit of storage for

each unit of computation. Two matrices e1 =

(
1 2 0

0.5 1 0
0 0 1

)

and e2 =

(
1 1/80 0
80 1 0
0 0 1

)
represent that resource 1 (CPU)

and resource 2 (GPU) are interchangeable and they are not
interchangeable with resource 3 (memory). To process User
1’s jobs, CPU is twice faster than GPU, while for User 2,
GPU is 80× faster than CPU.

An allocation is a mapping from (N,Q,E,D) to an allo-
cation A = {−→ai ,∀i ∈ N}, where −→ai = 〈a1i1, . . . , a1iM1

, . . . ,
aqi1, . . . , a

q
iMq
〉 denotes the allocated resources to user i. Given

this allocation, user i’s total resource in pool j as measured
by the first resource in that pool is

aij =

Mj∑
k=1

ajikei

(
k,

j−1∑
l=1

Ml + 1

)
.

The progress of user i is again defined as

αi = min

{
ai1
di1

, . . . ,
aiq
diq

}
.

With previous example, consider the allocation−→a1 = (5, 0, 20)
and −→a2 = (0, 4, 20) which leads to progresses of αi = 20 and
αj = 320. It is envy free as neither user prefer the other’s
allocation. It also provides sharing incentive because both
users are better than equally sharing the resources, which
results in progresses αi = 16 and αj = 163.

Now we characterize optimal solutions based on the fol-
lowing properties considered in algorithmic game theory and
multi-resource allocation.

Pareto Efficiency (PE): No user can increase her progress
without hurting the progress of at least another user.

Sharing Incentive (SI): Each user is no worse off by sharing
than exclusively using 1

n
of the system all the time.

Envy-Freeness (EF): No user prefers the allocation of an-
other user for higher progress.

Strategy-proofness (SP): No user is able to benefit by lying

about her resource demands.
SI provides some performance isolation because it guaran-

tees a minimum utilization for each user irrespective of the
demands of other users. Without SI, users may leave the
system with their own shares, leading to the collapse of the
sharing system. EF embodies the notion of fairness.

If PE is not met, there exists a possible (Pareto) improve-
ment on the system’s resource utilization. Without SP, users
can gain in the allocations by lying, which may lead to inef-
ficiency in the allocations and hurt other properties.

While DRF satisfies these properties for non-interchangeable
allocation, it fails to provide most of them under interchange-
able environment. Formally, we have

Lemma 2.1. There exists cases where DRF fails to pro-
vide PE, SI or SP, even with only one resource pool consisted
of two interchangeable resources.

Consider the simple case with 3 resources CPU, GPU and
memory, where CPU and GPU are interchangeable. Sup-
pose the system has n users, where the first n− 1 users pre-
fer GPU and the last user prefers CPU. Intuitively, the first
n−1 users would submit job profile with GPU and memory.
However, based on the DRF scheme, if the bottleneck is com-
putation, they each can get 1

n−1
of GPU, depending on its

efficiency matrix, the computation resource they get could
be worse than equal sharing. This violates SI. Meanwhile,
the CPU utilization is at most 1

n−1
, so it turns out neither

computation resources or memory is saturated, which vio-
lates PE. Finally, some user may lie about her demand to
request both resources and could potentially get more com-
putation resource if there is free space in CPU. Therefore
the allocation is not strategyproof.

Surprisingly, there is a hard tradeoff among these basic
properties. In particular, we can show for any allocation, if
it provides sharing incentive and Pareto efficiency, it cannot
be strategyproof. Conversely, if it is strategyproof, sharing
incentive and Pareto efficiency cannot be provided simulta-
neously. There is one exception: if all users have homoge-
neous relative efficiencies across all resources, then the prob-
lem degenerates to a traditional multi-resource allocation.

Lemma 2.2. No allocation can satisfy (i) PE and SI, and
(ii) SP simultaneously unless there exist non-zero scalars
k1, k2, . . . , kn, so that the relative efficiencies k1e2 = k2e2 =
· · · = knen for all n users.

Now we briefly discuss the intuition behind this lemma.
Consider the environment with CPU, GPU and memory de-
fined above. Two users i and j have the true relative ef-
ficiency of GPU compared to CPU gi and gj , we assume
gi < gj . Let the reported relative efficiency be g̃. PE im-
plies that user i should utilize CPU first while user j utilizes
GPU first. SI requires that both users get at least 1

2
(1 + gi)

and 1
2
(1 + gj) computation, respectively. As a consequence,

user i can report a g̃i that g̃i = g̃g − δ1 for small δ1 > 0 to
get more resources, which is ensured by SI. User j can also
manipulate its demand to counter i’s movement by lowering
its g̃j to g̃j = g̃i + δ2 for small δ2 > 0. As a consequence,
there does not exists a point (ḡi, ḡj) where both users are
satisfied.

3. BUDGET-BASED ALGORITHM
BUD consists of two components. The system operator

determines a per unit tag price for each resource using Al-
gorithm 1. The price is the same for each user, i.e., no price
discrimination. Denote resource prices by P = {p11, . . . , p1M1

,

p21, . . . , p
2
M2
, . . . , pq1, . . . , p

q
Mq
}.

Each user has the same virtual budget b. The payment for

each pool j is
∑Mj

k=1 a
j
ikp

j
k. For the case of two interchange-

able resources (CPU, GPU) and another non-interchangeable



resource (memory), the budget is the maximum money that
can be spent on either CPU and GPU combined, or memory.
Each user-i solves the following linear programming to max-

imize her progress, where aij :=
∑Mj

k=1 a
j
ikei(k,

∑j−1
l=1 Ml +1)

denotes aggregated resources evaluated by the first resource
in each pool.

max αi

subject to
Mj∑
k=1

ajikp
j
k ≤ b ∀j

αi ≤ aij

dij
∀j

ajik ≥ 0 ∀j, k

(1)

For the case of two interchangeable resources (CPU, GPU)
and another non-interchangeable resource (memory), let the
load of 3 resources be (Hc, Hg, Hm). The algorithm to decide
pricing is:

Algorithm 1 Price calculation

1: Sort users based on their βi := ei(2, 1) in ascending order.
2: Initialization: b := 1, pc := 1, pg := βn, pm = 1 + βn
3: Each user solves LP (1) and updateHc, Hg , Hm and Ig (small-

est index of a user using GPU)
4: while Hg 6= Hc do
5: if Hg < Hc then
6: pg := βIg , pm = pg + 1 (move user Ig − 1 to GPU)

7: Update Hc, Hg , Hm, Ig using (1)
8: else
9: Adjust user Ig ’s allocation from GPU to CPU or

10: Decrease pg while keeping pm = pg +1 until Hg = Hc

11: end if
12: end while
13: b = b

max(Hc,Hg,Hm)
.

Lemma 3.1. BUD is PE, SI and EF for two interchange-
able resources.

The proof idea is briefly discussed here. When BUD finds
the point where the load of CPU and GPU equalize, the
price (pc, pg, pm) is determined. By scaling the budget, either
computation or memory becomes saturated, which provides
Pareto Efficiency. Regarding sharing incentive, we show that
any user i can afford 1

n
(1 + βi) computation and 1

n
memory.

If memory is saturated, then there exists at least one user
whose memory share is no less than 1

n
, given the unit price

for memory, every user should have at least 1
n
pm budget.

For this amount of budget, users can also buy 1
n

of CPU and
GPU, no worse than equal sharing. Similar argument can be
applied when computation is the bottleneck. Envy-freeness
is a natural consequence due to the same budget for each
user and indiscriminate tag prices, which ensures that every
user can afford the allocation of others.

Interestingly, the traditional DRF allocation is a special
case for our BUD algorithm. When there are no interchange-
able resources, every resource has a unit price. Consider
the system with 9 CPUs, 18 GB RAM and user 1 with−→
d1 = 〈1/4, 1〉 and user 2 with

−→
d2 = 〈1, 1/3〉. Our BUD algo-

rithm generates b = 2
3

and the same allocation as DRF.
Table 1 summarizes the properties of different algorithms.

ES is simply equal share. EQ tries to equalizes the pro-
gresses of all users subject to resource constraints. ES is
the baseline of equal sharing. In DRF+, users choose their
favorite resource from the interchangeable pool and report
their demand on that resource. If the final allocation is worse
than equal share, they quit and get the 1/n share of the sys-
tem. FDRF forces users to submit same demand in every
interchangeable pool regardless of their efficiency matrices.
Given the impossibility results, we choose to sacrifice the

Properties EQ ES DRF+ FDRF BUD

Sharing Incentive 7 3 7 3 3
Envy freeness 7 3 3 3 3

Pareto efficiency 3 7 7 7 3
Strategyproofness 7 3 7 3 7

Table 1: Properties of different algorithms.

EQ ES DRF+ FDRF RB
0

0.5

1

1.5

2

P
er

fo
rm

an
ce

Figure 2: Performance evaluation.

strategyproofness in BUD. In practice, we developed tools
to measure users’ demand and efficiency matrix on the fly,
instead of relying on users to report them.

Online allocation. Here the challenge is that users’ de-
mands may not be known accurately, yet some estimations
can be obtained with error. In traditional resource alloca-
tion, we can monitor the progresses of all users periodically
and allocate resources to the user with the lowest progress
in an online manner to “correct” the imbalance due to es-
timation errors. However, this strategy does not work with
interchangeable resources because progress alone does not
reflect the fairness of a resource allocation.

Instead, we propose to use a novel envy graph G where
each node represents a user. A directed edge from user-i to
user-j means user-i envies user-j, i.e., prefers the allocated
resources of user-j. Actually, we can define an envy score
L(i) for user i to be its out-degree minus its in-degree in the
envy graphG. At each step of the allocation, BUD prioritizes
the user with the highest envy score L(i) among those with
tasks ready to run. Then the resource allocation and G are
updated and again the user with the highest L(i) is picked.
This process runs repeatedly.

Numerical simulation. We simulate a cluster environment
with 384 CPU cores, 12 GPUs, and 1152 GB memory shared
by 4 users. Each user has a different efficiency of using GPU
compared to CPU, obtained by running real experiments on
a hybrid cluster over Chameleon and Amazon AWS. We com-
pare our BUD algorithm with other algorithms from Table 1
using the total number of jobs finished for a given time as the
performance metric. Figure 2 shows normalized performance
with respect to ES. Budget-based algorithm outperforms the
existing best algorithms for about 30%.

Acknowledgements. This research is supported by NSF
grants 1617698, 1717588, 1730128, 1563095 , 1617773 , 1629397,
and MSIP Korea, grant IITP-2017-R0346-16-1007.

4. REFERENCES
[1] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica. HUG:

Multi-resource fairness for correlated and elastic
demands. In NSDI, 2016.

[2] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica. Dominant resource fairness:
Fair allocation of multiple resource types. In NSDI,
2011.


