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1. INTRODUCTION
E-commerce systems, e.g., Amazon, eBay and Taobao, are be-

coming increasingly popular. We consider eBay (or Taobao) like
E-commerce systems, where a large number of sellers and buyers
transact online. To reflect the trustworthiness of sellers, a reputa-
tion system is maintained. In particular, the feedback-based rep-
utation system [4] is the most widely deployed. Sellers of such
systems are initialized with a low reputation and they must obtain a
sufficiently large number of positive feedbacks from buyers to earn
a reputable label. For example, eBay and Taobao use three-level
feedbacks, i.e., {−1 (Negative), 0 (Neutral), 1 (Positive)}. Each
seller is initialized with a reputation score of zero. A positive (or
negative) rating increases (or decreases) the reputation score by
one, while a neutral rating does not change the reputation score.

Often, buyers are less willing to buy products from low reputa-
tion sellers. It was found that in eBay new sellers need to spend at
least seven hundred days (on average) to earn a reputable label [5].
Some sellers resort to “illegal means” to increase their reputation,
i.e., authors in [6] found that more than eleven thousand sellers in
Tabobao have conducted fake transactions. A number of compa-
nies, e.g., Lantian, Shuake and Kusha, even provide professional
fake transaction services and the per-year fake transaction volume
is estimated to be more than six million per company [6]. Fake
transactions are illegal, and this motivates us to explore “legitimate
means” to enhance (new) sellers’ reputation.

We propose to enhance sellers’ reputation via “price discounts”.
To illustrate, consider the eBay reputation system and that a sell-
er is reputable if and only if her reputation score is no less than
500. A seller can attract 10 transactions per day if she is reputable,
otherwise, she can only attract 1 transaction per day. Assume each
transaction earns a positive rating of 1. Suppose the price of a prod-
uct is $1 and its cost is $0.8. We have the following cases.
• No discounts: For a new seller (initialized with a reputation s-

core of zero) who does not provide any discount, she needs to spend
500 days to earn a reputable label. The total profit in the first 500
days is (1− 0.8)× 1× 500 = 100.
•With discounts: A new seller provides a discount of 40% before
she earns a reputable label, i.e., the price becomes 0.6, and she
does not provide any discount after becoming reputable. Assume
this discount increases the transaction volume to 2 per day. She
needs to spend 250 days to earn a reputable label. The profit in the
first 250 days is (0.6−0.8)×2×250=−100. The total profit in the
first 500 days is (0.6−0.8)×2×250+(1−0.8)×10×250 = 400.

The above cases illustrate: (1) Price discounts can enhance sell-
ers’ reputation; (2) Price discounts may lead to profit losses in the
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short run, but the reputation effect can compensate the profit in
subsequent days. Note that in real-world E-commerce systems, the
demands (i.e., per-day transaction volumes) are dynamic, and buy-
ers may provide biased ratings, etc. This paper studies the discount
selection problem in such general settings. We develop a mathe-
matical model to capture important factors of an E-commerce sys-
tem. We formulate a profit maximization framework via a semi-
Markov decision process (SMDP) to explore the optimal trade-offs
in selecting price discounts. We theoretically characterize the opti-
mal profit and discount.

2. SYSTEM MODEL

2.1 Baseline E-commerce System Model
Consider an E-commerce system like eBay and Taobao where

buyers purchase products from online stores operated by sellers,
and a feedback-based reputation system is maintained to reflect the
trustworthiness of sellers. Sellers set the selling price and advertise
the quality of products in their online stores, and finally ship the
ordered products to buyers. Let q ∈ R+ and c ∈ R+ denote the
price and overall cost of a product respectively. The overall cost
c captures the manufacturing cost, shipment fee, etc. We define
the unit profit to the seller u ∈ R as the price minus the cost, i.e.,
u , q − c.

To reflect the trustworthiness of sellers, a feedback-based repu-
tation system tags each seller with a reputation score s ∈ S, where
S , {−Ŝ, . . . ,−1, 0, 1, . . . , S} and Ŝ, S ∈ N ∪ {∞}, The rep-
utation score is accessible by all buyers. For example, eBay and
Taobao uses Ŝ = 0, S = ∞, in other words S = {0, 1, . . . ,∞}.
The higher the reputation score, the more reputable the seller is.
When a seller joins an E-commerce system, the reputation system
initializes her reputation score as s = 0, i.e., a low reputation.
Buyers provide feedback ratings to reflect their evaluation on the
overall transaction quality (i.e., product quality, trustworthiness of
the seller, etc). Each feedback rating is drawn from a discrete rating
metric setM , {−M̂, . . . ,−1, 0, 1, . . . ,M}, where M̂,M ∈N.
For example, M = {−1(Negative), 0(Neutral), 1(Positive)} is
deployed in eBay. The higher the rating, the more satisfied the
buyer is toward that seller. Consider a seller has a reputation score
s, her reputation score becomes s+m once she receives a feedback
rating m∈M. For example, in eBayM= {−1, 0, 1}, a rating of
1 (or −1) increases (or decreases) the reputation score by 1, while
a rating of 0 does not change the reputation score. We aim to en-
hance honest sellers’ reputation via price discounts. Thus we focus
on sellers who advertise product quality honestly.

2.2 Price Discount Model
To speed up the reputation accumulating process, a seller can set
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a price discount a ∈ A , [0, 1]. Precisely, a denotes the discount
rate, and the product price under discount a is q × (1 − a). For
example, a = 0.2 means 20% off and the corresponding price is
0.8q. Also a = 0 captures that a seller does not provide any dis-
count. Let ũ(a) denote the unit profit under discount a. Then we
have ũ(a) , u− aq,∀a ∈ A.
Modeling rating behavior under discounts. Human factors like
personal preferences or even biases need to be included in our mod-
el. Some buyers may provide higher ratings while other may pro-
vide lower ratings. Let R(s, a) ∈ M denote a rating provided by
buyers to the seller who has a reputation score s ∈ S and sets a
discount a ∈ A. The rating R(s, a) is a random variable, and we
define its cumulative distribution function (CDF) as

FR(m|s, a) , P [R(s, a) ≤ m] , ∀m ∈M, s ∈ S, a ∈ A.

For example, consider M = {−1, 0, 1} and S = {0, 1, . . . ,∞}.
Then, one example of FR(m|s, a) is{

FR(−1|s, a) = [0.1/(1 + s)]1+a,

FR(0|s, a) = [0.3/(1 + s)]1+a, FR(1|s, a) = 1.
(1)

Definition 1. Given two random variables X,Y with the same
sample space Ω. We say X is larger than Y (written as X � Y ),
iff P[X > x] ≥ P[Y > x] holds for all x ∈ Ω.

Assumption 1. Given a ∈ A, R(s, a) � R(j, a) holds for all
s > j, where s, j ∈ S. Given s ∈ S, R(s, a) � R(s, b) holds for
all a > b, where a, b ∈ A.

Assumption 1 captures: (1) The herding effects [1] that buyers give
higher ratings to more reputable sellers; (2) The price effect that
buyers tend to become more lenient in providing ratings under larg-
er discounts. Equation (1) satisfies Assumption 1.
Modeling demand under discounts. We consider a dynamic de-
mand from buyers and use the transaction’s arrival process to model
the demand. We define the transaction’s arrival process through the
inter-arrival time (or waiting time) of transactions. Precisely, let
W (s, a) ∈ R+ denote the inter-arrival time of transactions to the
seller who has a reputation score s∈S and sets a discount a∈A.
For example, W (0, 0) measures the amount of time a seller must
wait until the next transaction arrives when she has a reputation s-
core s = 0 and does not provide any discount. The inter-arrival
time W (s, a) is a random variable and we denote its CDF as

FW (w|s, a) , P[W (s, a) ≤ w], ∀w ∈ R+, s ∈ S, a ∈ A.

One example of FW (w|s, a) is

FW (w|s, a) = 1− e−λ(s,a)w, (2)

which means thatW (s, a) follows an exponential distribution with
a parameter λ(s, a) ∈ R+. This also models the Poisson arrival of
transactions. One example of λ(s, a) is

λ(s, a) = (1 +
√
a)/(1 + e−s), ∀s ∈ S, a ∈ A. (3)

Assumption 2. Given a ∈ A, W (j, a) � W (s, a) holds for all
s > j, where s, j ∈ S. Given s ∈ S, W (s, b) � W (s, a) holds
for all a > b, where a, b ∈ A.

Assumption 2 captures: (1) The reputation effect that buyers are
more willing to transact with reputable sellers; (2) The price ef-
fect that buyers are more willing to buy a product under a larger
discount. Consider Eq. (2), Assumption 2 means that λ(s, a) in-
creases in both s and a. One can easily check that one example of
such λ(s, a) is derived in Eq. (3).

Assumption 3. There exists two constants ε > 0, δ > 0 such that
FW (δ|s, a) ≤ 1− ε for all s ∈ S, a ∈ A.

Assumption 3 states that it is impossible that an infinite number of
transactions arrive to an online store within a finite time. Consider
Eq. (2), Assumption 3 means that λ(s, a) is bounded, e.g., the
λ(s, a) derived in Eq. (3).
Modeling discount update. Recall that the reputation score influ-
ences the demand. We therefore focus on the scenario that a seller
updates the discount only after a new transaction arrives, i.e., his
reputation score is updated. Under this scenario, we next introduce
the formal discount selection models for sellers.

2.3 The Seller’s Decision Model
The seller needs to select a discount for each transaction. Thus

the decision space for the seller is the discount set A. We consider
the full information scenario that FR(m|s, a) and FW (w|s, a) are
given. We formulate a profit maximization framework via an SMD-
P to characterize the optimal trade-offs in determining discounts. In
practice, FR(m|s, a) and FW (w|s, a) are usually unknown, and a
seller can infer them from historical transaction data. We leave it
as a future work.

We consider a continuous time system with infinite-horizon t ∈
[0,∞). Let ti denote the arrival time of the i-th transaction, where
i ∈ N+. We say a seller is at state s ∈ S if she has a reputation
score s. Thus, the state space is S. Decision epochs correspond
to the time immediately following an arrival of a transaction. For
example, the first decision epoch occurs at t1. The initial decision
epoch does not correspond to any transaction. Without any loss of
generality, we index the initial decision epoch with 0, and use t0 =
0 to denote its occurrence time. The seller is the decision maker and
the decision to be made at each decision epoch is setting a discount
a ∈ A. We also call a the action. Note that the action set at each
decision epoch is the same A. When the seller chooses an action
a at state s, she receives a lump sum reward denoted by k(s, a),
which can be expressed as k(s, a) = ũ(a), ∀s ∈ S, a ∈ A. Note
that the lump sum reward corresponds to the unit profit earned from
the next transaction. Namely, it is delayed to be payed in the next
decision epoch.

Note that the inter-arrival (or waiting) time of decision epochs
is W (s, a), which has a CDF FW (w|s, a). Let p(j|s, a), where
s, j ∈ S, a ∈ A, denote the state transition probability

p(j|s, a) , P[next state is j|current state s, discount a]

= FR(j − s|s, a)− FR(j − s− 1|s, a).

Namely, p(j|s, a) models the dynamics of the reputation score.
Setting price discounts may lead to some profit losses at the

present decision epoch, but it can speed up the reputation score
accumulation process, which may improve sellers’ profit in subse-
quent decision epochs. To quantify the optimal discount and rep-
utation trade-off, we use an expected infinite-horizon discounted
profit for the seller. Precisely, we consider a continuous-time dis-
counting rate α ∈ R+ and define the expected infinite-horizon dis-
counted profit as

vπ(s) , E

[
∞∑
i=0

e−αti+1k(si, ai)

∣∣∣∣∣ s0 = s, π

]
, ∀s ∈ S,

where si, ai denote the reputation score and discount at the i-th
decision epoch, and π denotes a policy [2], which prescribes a dis-
count for each transaction (or decision epoch). We also call vπ(s)
the long-term profit. For example, the long term profit for a new
seller is vπ(0). One interpretation of the discounting rate α is in-
flation from economic perspectives. The discounting rate α also
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reflects the willingness of a seller to trade discounts for reputation.
Increasing α means that the seller cares less about the future profit
(or is more keen about the present profit). In other words, she is
less willing to trade discounts for reputation.

We define a stationary and deterministic (SD) policy as π =
(d)∞, where d : S → A denotes a Markovian deterministic de-
cision rule, which maps each state to a price discount.

Problem 1. Given FR(m|s, a), FW (w|s, a) and s0, select price
discounts to maximize the long term profit. Formally,

maximize
π∈Π

vπ(s0)

where Π denotes a set of all possible SD policies.

Problem 1 optimizes the long term profit over a special class of
policies, i.e., SD policies, because SD policies suffice to attain the
global maximum long term profit.

3. OPTIMAL PROFIT AND DISCOUNTS
It is mathematically intractable to derive the closed-form expres-

sion for the maximum long-term profit denoted by v∗(s). In the
following theorem, we identify a monotone property of v∗(s).

Theorem 1. For all s ≥ j, where s, j ∈ S, v∗(s) ≥ v∗(j) holds.
Furthermore, v∗(s) is non-increasing in α.

Due to page limit, we present proofs to theorems in our technical
report [3]. Theorem 1 states that the seller can earn more profit if
her reputation score increases or the inflation decreases. In other
words, sellers always have incentive to increase their reputation s-
cores. Note that these monotone properties serve as an important
building block for us to characterize the optimal discount.

Definition 2. For each reputation score s ∈ S, we define the as-
sociated action-dependent long term profit as

Q(s, a) , φ(s, a)V (s, a), ∀s ∈ S, a ∈ A,

where φ(s, a) =
∫∞

0
e−αwdFW (w|s, a) and V (s, a) = k(s, a) +∑

j∈S p(j|s, a)v∗(j).

Given that a seller has a reputation score s, the Q(s, a) gives the
maximum long term profit she can earn by setting a discount a. The
optimal discount d∗(s) satisfies d∗(s) ∈ arg maxa∈AQ(s, a). We
refer reads to our technical report [3] for more derivation details.

Theorem 2. Suppose a ∈ As, where As is defined as

As , {a|Q(s, a) > 0, a ∈ A}, ∀s ∈ S.

For all j>`≥s, where j, `, s∈S, Q(j, a)≥Q(`, a) holds.

Theorem 2 states that given the same discount a ∈ As, the seller
can earn more profit if she has a higher reputation score. We for-
mulate the following problem to further study the optimal discount.

Problem 2. Given s, select a to maximize lnQ(s, a):

maximize
a∈A

lnQ(s, a) = lnφ(s, a) + lnV (s, a)

In Problem 2, we maximize the log function of the action-dependent
long term profit. This treatment does not change the optimal dis-
count and will facilitate the analysis.

Theorem 3. Suppose FW (w|s, a) is strictly concave with respect
to a and FR(m|s, a) is convex with respect to a. Problem 2 has a
unique optimal solution.

Theorem 3 derives sufficient conditions to guarantee the unique-
ness of the optimal discount for each given s. This uniqueness
enables us to further characterize the optimal discount via compar-
ative statics. When the optimal discount is unique, it is algorithmi-
cally easy to locate it. For example, Eq. (1) satisfies the condition
on FR(m|s, a).

Corollary 1. Suppose FW (w|s, a) satisfies Eq. (2). If λ(s, a) is
strictly concave in a and FR(m|s, a) is convex in a, there exist a
unique optimal discount for each reputation score s.

Corollary 1 states that given the Poisson arrival of transactions, if
the transaction’s arrival rate λ(s, a) has a diminishing return in the
discount a, then the optimal discount is unique for each reputation
score. For example, Eq. (3) satisfies the condition on λ(s, a).

In order to apply comparative statics to further characterize the
optimal discount, we define the following notation.

Definition 3. We define the hazard function of Q(s, a) with re-
spect to the discount a as

h(s, a),−∂Q(s, a)

Q(s, a)
/∂a=−∂Q(s, a)

∂a

1

Q(s, a)
, ∀s∈S, a∈As.

The hazard function h(s, a) measures the proportional reduction in
the discount-dependent long-term profit (i.e., −∂Q(s, a)/Q(s, a))
with respect to the marginal change in the price discounts (i.e., ∂a).

Theorem 4. Suppose the conditions in Theorem 3 hold. If h(s, a)
is non-decreasing in α, the unique optimal discount d∗(s) is non-
increasing in α. If h(s, a) is non-decreasing in s, the unique opti-
mal discount d∗(s) is non-increasing in s.

Theorem 4 states sufficient conditions under which the unique dis-
count is non-increasing in the discounting rateα and non-increasing
in reputation score s. One interpretation is that the seller sets small-
er discounts when the inflation increases or she is more keen about
the present profit. More reputable sellers set smaller discounts.

4. CONCLUSION AND FUTURE WORK
In this paper, we develop a mathematical model to capture im-

portant factors of an E-commerce system. We formulate a profit
maximization framework via a semi- Markov decision process (S-
MDP) to explore the optimal trade-offs in selecting price discounts.
We theoretically characterize the optimal profit and discount. Our
work has number of future directions. In practice, the discount-
dependent demands (i.e., buyers preferences over discounts) are
unknown. How to perform online inference to determine the op-
timal discount? There may be multiple sellers selling similar prod-
uct. How to capture the competition among them? How to capture
competition among sellers? Seller updates discount when no trans-
action arrives for a while. How to extend our model to capture it?
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