On efficient delivery of web content

Mangesh Kasbekar Akamai Technologies

On efficient delivery of web content

Larger context: Improving the energy efficiency of an entire organization

- The importance of understanding the unique profile of the organization
- What is Akamai's unique story?

Three short stories

- The Akamai Content Delivery Network
- Trends in web content and traffic
- Opportunities for energy efficiency
- Questions

First short story

- The Akamai Content Delivery Network
- Trends in web content and traffic
- Opportunities for energy efficiency

The Akamai CDN

- What is a CDN
- Why use a CDN
- What does a CDN offer

The Akamai CDN

- Akamai deployment
 - 66,000+ servers
 - 120+K CPUs, 400+K disks
 - Located in 1000+ datacenters in rented space
- Akamai Traffic
 - Petabytes delivered each day
 - Recent traffic record of 3.5 Tbps
 - Growing extremely fast

Energy efficiency of this massively distributed platform

Areas that we can't control

- Datacenter PUE
- Energy source
- Hardware's energy efficiency
- Growth in the web traffic
- Areas that we do control
 - Server software efficiency
 - Operational practices around traffic management
- Currently, datacenters are inefficient
 - PUE of 1.7-3.0
 - Any savings in the reduction of machine count are amplified by the same factor

The Akamai CDN

How best to control what we can control
Thorough understanding of the workload

Second short story

- The Akamai Content Delivery Network
- Trends in web content and traffic
- Opportunities for energy efficiency

Trends

General web traffic

against

- Software downloads
- Transactional application acceleration
- Large-footprint long-tail content
- Media downloads and full movie delivery

General web traffic

- Selling point: High performance for cacheable content
- Content type: html, images, stylesheets, javascripts
- Peak to valley ratio = 1.8
- Peak traffic at 1000-1600 EST

Software downloads

- Selling point: software downloads and frequent updates
- Requirements: cheap delivery and origin offload
- Content type: very large files, high cache hit rates
- Peak to valley ratio = 1.4
- Peak traffic hr: early in the morning, but fairly flat

Large-footprint long-tail traffic

- Selling point: delivery of user-generated content
- Requirement: Extremely high origin offload
- Content type: thumbnails small videos, bad cacheability
- Peak to valley ratio = 2
- Peak traffic at 1200-1800 EST

Media downloads and movie delivery

- Selling point: movie and media delivery
- Requirement: real-time performance
- Content-type: very large media files
- Peak to valley ratio = 7
- Peak traffic at 2200-0100EST

Combined traffic pattern

© 2010 Akamai Technologies, Inc.

Not to scale

Metrics

- Different resources in a server
 - CPU, Disk I/O, Memory, Network Bandwidth, Various internal limits
- Define U = utilization of the most constrained resource for a given level of traffic
- Define a metric for resource-intensiveness of a class of traffic, and normalize:
 - -R = U * constant / traffic

R for different classes of traffic

Category	R	CPU	DISK
General	1.0	100%	60-70%
Software downloads	0.3-0.4	100%	<50%
Large-footprint long-tail	1.5-4.0	70-95%	100%
Media downloads	0.3-0.4	100%	<50%

Low R = High efficiency

Combined traffic pattern

© 2010 Akamai Technologies, Inc.

Not to scale

Trends

Summary

- Four large classes of traffic
- Different requirements from the customer
- Different traffic patterns
- Different levels of resource intensiveness

Third short story

The Akamai Content Delivery Network

- Trends in web content and traffic
- Opportunities for energy efficiency

Opportunities

- Effect of traffic consolidation
- Hosting in energy efficient data centers, new generations of hardware, OS, and software
- Using fewer servers to serve the same traffic
 - Micro: Server efficiency projects
 - Macro: Traffic mixing

Traffic consolidation

Several thousand websites hosting their own web-server infrastructures v/s all serving their traffic from a common CDN platform

- Better server utilization for the CDNs due to flatter peaks and lower peak to valley ratio
- Shared headroom
- Efficient platform

Improving things we don't directly control:

- Hosting in energy efficient data centers as they become available
- New generations of hardware, OS and software
 - New generation of processors
 - SSDs
 - Rejecting inefficient 3rd party software

Micro: server efficiency projects

Reducing the usage of the most constrained resource in each traffic class.

2 examples:

- Reducing system calls related to network I/O for large files
- Using probabilistic methods for making caching decisions for large-footprint long-tail content

Reducing network I/O calls

- 64KB forward-read sizes
- 64KB client-write sizes

© 2010 Akamai Technologies, Inc.

• Probabilistic caching for long-tail content

Macro: Traffic mixing

CDNs get all classes of web traffic, smart traffic mixing is very beneficial to minimize unusable resources

Opportunities

- Different peak hours
- Different resource requirements
- Different performance needs
- Challenges
 - Cache churn
 - Disk fragmentation
 - Precise traffic control by the global load-balancer

Conclusion

Akamai's unique story in improving its energy efficiency

- Main trends in web traffic
- Resource intensiveness characterization of traffic classes
- Reducing the number of machines needed to serve the same amount of traffic
- Smart traffic mixing