Energy Efficiency and Sustainability of Data Centers

Van P. Carey
A. Richard Newton Chair in Engineering
Professor, Mechanical Engineering Department
Director, Energy and Information Technologies Laboratory
University of California at Berkeley

Data Centers – a focus of information processing energy efficiency

Key Challenges

Growing consumption of power
~ 4 MW each, 10x for future Centers
Energy cost of supercomputing becoming prohibitive
Cooling consumes half

Energy efficient operation
Reduce cost and carbon footprint

Sustainability:
minimize lifecycle energy resources (exergy) consumed
Data center energy use

EPA study: doubling time for DC energy use: about 5 years

2006: 1.5% of US total electricity use (61 billion kWh)

2011: 3% of US total electricity use
 (122 billion kWh, ~ $10 billion)

2010, DC servers estimated to consume about 2 percent of the world's electricity, (~34 1,000-megawatt power plants)

Strategies for Data Center Efficiency/Sustainability

Efficient Electrical Power
- AC to DC conversion

Efficient Thermal Management
Design for Efficiency
- Energy/exergy design analysis
- Liquid cooling strategies

Efficient Cooling Control
- model based (exergy aware) controls

Load Distribution Control

Use Sustainable Components and Systems
- Assess using lifecycle exergy consumption

Use Renewable, Low Carbon Energy Sources
- Solar powered data center electronics and cooling
EXERGY

Exergy => (available energy) energy fully convertible to work

=> quantifies the amount of useful energy flowing (quantity and quality)

Energy flowing through the data center is not consumed, it is degraded

Electricity (organized) → heat (disorganized)

Modeling exergy destruction throughout the data center predicts where energy inefficiencies are greatest

Exergy destruction quantifies value of useful energy resources lost

Life-Cycle Exergy Analysis

Important to consider life-cycle in analysis

[Diagram showing the life-cycle phases of material extraction, manufacturing, operation, recycling/disposal, and transportation]
Sustainability indicators are historically classified in one of three groups:
- environmental
- social
- economical

Life-cycle exergy consumption is an environmental metric. Its strength lies in the fact that it is a thermodynamically based, scientifically rigorous quantity that in a single value allows for the comparison of mass inputs and energy inputs of different quality.

Other environmental sustainability indicators that track different quantities throughout the life-cycle:
- Tracking mass – Material Input per Service Unit (MIPS)
 - tracks the mass of all the material inputs required
 - normalizes by a service unit of the product or process
- Tracking embodied energy – emergy
 - tracks all of the available energy that went into a product or process over its life-cycle
 - emergy of an object is the sum of all the exergy that went into making it
 - similar to life-cycle exergy consumption, but not exactly the same
 - (life-cycle exergy consumption accounts for external exergy destruction)
Sustainability metrics (cont.)

- Tracking all material and energy inputs and outputs –
 Life-Cycle Assessment (LCA)
 - this metric tracks all of the mass and all of the energy flows
 - then evaluates the environmental impacts of flows
 - not a single, scientifically based metric
 - many environmental impacts that come out of a LCA
 - provides a complete picture of environmental effects, but can often be contradictory and don't easily lend themselves to ranking design choices

Advantages of Life-Cycle Exergy Analysis

- Tracks sum of all consumption of energy resources in product life cycle
- Accounts for thermodynamic differences of energy resources in a consistent way
- Inefficient life cycle components (high exergy destruction rates) are easily identified and assessed
Operational Performance:
Vision:
Fast, easy to use analysis software to predict data center energy performance

Fast compact models of data center energy performance

Uses:
• Fast parametric optimization of new DC designs
• Integrate compact models into smart digital controllers
• Fast, easy assessment of evolutionary design changes
Fast Compact Performance Model

- Numerically solve equations for
 - air flow
 - energy transport
 - exergy transport and destruction

Use Matlab GUI Platform for Design

- Use for
 - rapid design analysis
 - digital control

Assessment: Full CFD Comparison

Flexible Input Process

Visualization Tools Development

Operational exergy destruction analysis - standard control volume formulation

\[
\dot{X}_j = \sum_j (1 - \frac{T_o}{T_j})\dot{Q}_j - \dot{W}_{cv} + \sum_i \dot{m}_i \dot{\phi}_i - \sum_e \dot{m}_e \phi_e
\]

\[
\dot{\phi} = (h - h_o) - T_o (s - s_o)
\]

- Using above equations, can calculate exergy consumed from operation
- Studies have been performed examining how different operational parameters effect exergy consumption
Thermal performance and energy efficiency of data center designs

Data Center Basics

- Cool air from CRAC (Computer Room Air Conditioning) units enters via floor tiles, passes through server racks to cool them.
- Warm air exits via ceiling outlets, generally back to the CRAC unit.
- High power consumption: Can reach 100+ kW for a 500 sq ft. room.

Compact Model of Potential flow and Convective Transport

- Finite difference formulation, programmed in MATLAB
- Potential flow
 - Velocity is the gradient of the potential \(\phi \).
 - \(\mathbf{v} = \nabla \phi \).
 - Assumes incompressibility, no vorticity:
 - \(\nabla \cdot \mathbf{v} = 0 \).
 - Boundary conditions are defined at cell boundaries using potentials set in “virtual cells.”
- Convective energy transport
 - Steady state, energy transport is convection dominated.
 - Full mixing within each subdivided cell in the system.
 - Server heat generation applied immediately downstream of racks.
 - Simplified governing energy equation:

\[
\int_{\partial A} \rho C_p v T \, dA = Q_{\text{gen}}
\]
COMPACT vs. CFD: Flow

- Same model inputs used with ANSYS FLUENT to generate velocity and temperature fields
 - Intended for comparison to COMPACT, to provide a benchmark as a compact CFD model
COMPACT vs. CFD: Temperature

- Velocity and temperature fields generated by COMPACT GUI, including vortex superposition:
 - ~4400 cells, under 30 seconds
- ANSYS FLUENT solution:
 - ~5.5 million cells, 70 minutes

Experimental Validation

- Recorded measurements at a HP Laboratories data center
 - Temperature measurements on racks and in aisles
 - Power consumption of server racks
 - Room inlet/outlet flow measurements
- Initial results:
 - Significant over-prediction of temperatures in areas of high recirculation, likely due to lack of accounting for buoyancy effects
As expected, full CFD slightly outperforms the compact model.
- Performance can be comparable to FLUENT for said cases.
- Given heavy computational and other associated costs with full CFD, COMPACT is a feasible first-order design tool.

Full life cycle exergy consumption

Vision:
Analysis tools to predict life cycle exergy consumption data for IT systems.
Analysis tools to predict life cycle exergy consumption data for IT systems

Uses:
• strategies to minimize lifecycle exergy consumption
• Highest exergy consumption elements are greatest sources of inefficiency – prime targets for improvement

Established library of exergy consumption data and submodels for:
- Material extraction and processing (steel, aluminum, copper, plastics, etc.)
- Manufacturing processes
- Transportation
- Disposal/recycling
- Ancillary equipment (example: CRAC units)
Features of life cycle exergy analysis (LCEA) software

- contains library of exergy data and submodels for materials, manufacturing processes, transportation, end of life exergy consumption
- includes COMPACT determination of operational exergy consumption
- can analyze life cycle exergy consumption for
 - Devices
 - Clusters of devices (DC subsystems)
 - Entire virtual data centers
- GUI menu-driven assembly of components, systems
- GUI selection of output analysis tools
- Submodel for exergy consumption in CRAC units

Example device life cycle exergy analyses
(typical data center operating conditions)

2U-rack-mounted server with two Intel Pentium III 1.0 GHz processors, one 36 GB SCSI hard disk drive, one CD-ROM drive, and one floppy disk drive

 - one hard drive bay used, transport by ship
 - all of the hard drive bays full, transport by ship
 - all of the hard drive bays full, transport by air

30 ton CRAC unit manufactured by Stulz Air Technology Systems, Inc.
Tools to analyze energy efficiency and sustainability

COMPACT

- Fast parametric optimization of new DC designs
- Integrate compact models into smart digital controllers (model dynamic response)
- Fast, easy assessment of evolutionary DC design changes

LCA software

- compare different stages within a system or component’s lifecycle on a common basis
- highest exergy consumption elements are greatest sources of inefficiency – prime targets for improvement
- compare multiple systems in stages or overall
- design components and systems to minimize lifecycle exergy consumption

Strategies for Data Center Efficiency/Sustainability

Efficient Electrical Power
- AC to DC conversion

Efficient Thermal Management
Design for Efficiency
- Energy/exergy design analysis
- Liquid cooling strategies
- model based (exergy aware) controls

Efficient Cooling Control

Load Distribution Control

Use Sustainable Components and Systems
- Assess using lifecycle exergy consumption

Use Renewable, Low Carbon Energy Sources
- Solar powered data center electronics and cooling

Acknowledgements
Support from Hewlett Packard Research Laboratory, Palo Alto, UC Discovery Grant, CITRIS
Collaborators: Chandrakant Patel, Cullen Bash, Amip Shah (HP Laboratories)
UCB Graduate Students: Guislain Doljac, Christopher Hanneman, Michael Toulouse, David Lettieri