

Stein's Method for Steady-State Approximations: Error Bounds and Engineering Solutions

Jim Dai

Joint work with Anton Braverman, Jiekun Feng Cornell University

> and Pengyi Shi Purdue University

ACM Sigmetrics 2017, Champaign-Urbana

June 9, 2017

Collaborators

• Anton Braverman (Northwestern Kellogg)

• Jiekun Feng (Cornell Statistics)

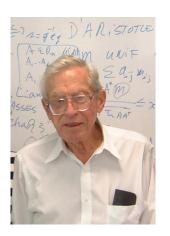


Pengyi Shi (Purdue Krannert)

Outline

- 1. A sample result
- 2. Stein framework
- **3.** Error bounds
- 4. Other results
- **5.** High-order approximations (Engineering solution)
- 6. Moderate deviations
- 7. Challenges and opportunities

Charles Stein, 1920-2016



- An obituary by Brad Efron.
- J. R. Statist. Soc. A (2017) 180, Part 3, pp. 923-936

References

- Stein (1972), A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In *Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability*, Volume 2: Probability Theory, 583-602.
- Chen (1975), Poisson approximation for dependent trials. *Ann. Probab.*, **3**. 534-545.
- Barbour (1988), Stein's method and Poisson process convergence. Journal of Applied Probability, 25, 175-184.
- Chen, Goldstein and Shao (2011), Normal Approximation by Stein's Method, Springer, New York.

A sample result

- Probability metrics
- Erlang-C model, Wasserstein metric

Two random elements

- Given two random elements: $X \in \mathcal{S}$ and $Y \in \mathcal{S}$,
 - X the original,
 - Y an approximation,
- and an appropriate function $h: \mathcal{S} \to \mathbb{R}$, bound

$$\mathbb{E}h(X) - \mathbb{E}h(Y).$$

• When $S = \mathbb{R}$ and $h(x) = 1_{(-\infty,b]}(x)$,

$$\mathbb{E}h(X) - \mathbb{E}h(Y) = \mathbb{P}\{X \le b\} - \mathbb{P}\{Y \le b\}.$$

• When $S = \mathbb{R}$ and $h(x) = x^2$,

$$\mathbb{E}h(X) - \mathbb{E}h(Y) = \mathbb{E}X^2 - \mathbb{E}Y^2.$$

Probability metrics

• Kolmogorov distance, when $S = \mathbb{R}$,

$$d_K(X,Y) = \sup_{x \in \mathbb{R}} |\mathbb{P}\{X \le x\} - \mathbb{P}\{Y \le x\}|.$$

• Wasserstein distance,

$$d_W(X,Y) = \sup_{h \in \text{Lip}(1)} |\mathbb{E}h(X) - \mathbb{E}h(Y)|,$$

where, for a metric space (S, d),

$$\operatorname{Lip}(1) = \Big\{ h : \mathcal{S} \to \mathbb{R}, \quad |h(x) - h(y)| \le d(x, y) \Big\}.$$

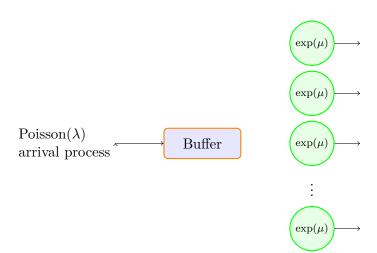
Total variation,

$$d_{\mathrm{TV}}(X,Y) = \sup_{A \subset \mathcal{S}} \Big| \mathbb{P}\{X \in A\} - \mathbb{P}\{Y \in A\} \Big|.$$

Typical approximations

- $Y \sim N(0,1)$; Stein (1972)
- $Y \sim \text{Poisson}(1)$; Chen (1975)
- $Y \sim \text{Gamma}$; Luk (1994)
- binomial, geometric, ...
- Finding your appropriate Y; engineering solution.

M/M/n queue (for illustration)



Markov chain and its transitions

- $X = \{X(t), t \ge 0\}$ is a CTMC on $\mathbb{Z}_+ = \{0, 1, \dots, \}$.
- Generator

$$G_X f(i) = \lambda \Big(f(i+1) - f(i) \Big) + \min(i, n) \mu \Big(f(i-1) - f(i) \Big)$$

for $i \in \mathbb{Z}_+$

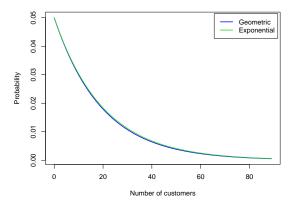
Assume

$$R \equiv \lambda/\mu < n$$
.

Random variable $X(\infty)$ has the stationary distribution.

M/M/1 queue: R = .95

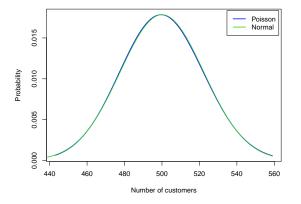
• $X(\infty)$ is geometric: $\mathbb{P}\{X(\infty) = i\} = (1 - R)R^i, i \in \mathbb{Z}_+$



• Continuous random variable $Y(\infty) \sim \exp(.05)$

$M/M/\infty$ queue: R = 500

• $X(\infty)$ is Poisson(500).



• Continuous random variable $Y(\infty) \sim N(500, 500)$

Erlang-C Model – M/M/n Queue

• Steady-state number of customers in system $X(\infty)$. Define

$$\tilde{X}(\infty) = \frac{X(\infty) - R}{\sqrt{R}}.$$

• $\tilde{X}(\infty)$ lives on grid $\{x = \delta(i - R), i \in \mathbb{Z}_+\}, \ \delta = 1/\sqrt{R}$.

Theorem 1 (Part a, Braverman-D-Feng 2015)

For all $n \ge 1$, $\lambda > 0$, $\mu > 0$ with $1 \le R < n$,

$$d_W(\tilde{X}(\infty), Y(\infty)) \le \frac{157}{\sqrt{R}}.$$

$$Y(\infty) = Y^{(\lambda,\mu,n)}(\infty)$$

The continuous random variable $Y(\infty)$

• $Y(\infty)$ has density

$$\kappa \exp\left(\frac{1}{\mu} \int_0^x b(y)dy\right),\tag{1}$$

where

$$b(x) = \begin{cases} -\mu x, & x \le |\zeta|, \\ \mu \zeta, & x \ge |\zeta| \end{cases}$$
 (2)

and

$$\zeta = \frac{R - n}{\sqrt{R}} < 0.$$

Discussions

Corollary

For all $n \ge 1$, $\lambda > 0$ and $\mu > 0$ with $1 \le R < n$,

$$\left| \mathbb{E}X(\infty) - R - \sqrt{R}\mathbb{E}Y(\infty) \right| \le 157.$$

- Not a limit theorem
- For $\mu = 1$.

n = 5			n = 500		
λ	$\mathbb{E}X(\infty)$	Error	λ	$\mathbb{E}X(\infty)$	Error
3	3.35	0.10	300	300.00	6×10^{-14}
4	6.22	0.20	400	400.00	2×10^{-6}
4.9	51.47	0.28	490	516.79	0.24
4.95	101.48	0.29	495	569.15	0.28
4.99	501.49	0.29	499	970.89	0.32

Universal

Universal approximation

• $Y(\infty)$ depends on system parameters λ, n and μ :

$$Y(\infty) \sim f(y) \sim \begin{cases} N(0,1) & \text{if } y < |\zeta|, \\ \text{Exponential}(|\zeta|) & \text{if } y \ge |\zeta|. \end{cases}$$

 $X(\infty) < n$ behaves like a normal, and $X(\infty) \ge n$ behaves like an exponential.

- Gurvich, Huang, Mandelbaum (2014), Mathematics of Operations Research
- Glynn-Ward (2003), Queueing Systems

Stein's method

- Stein operator (generator, basic adjoint relationship)
- Stein equation (Poisson equation)

Stein operator for N(0,1)

Lemma (Stein 1972)

 $\pi(dx) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}dx$ is the unique distribution satisfying

$$\int_{-\infty}^{\infty} (f''(x) - xf'(x))\pi(dx) = 0 \quad \text{for all } f \in C_b^2(\mathbb{R}).$$
 (3)

 $Y \sim N(0,1)$ is the unique random variable satisfying

$$\mathbb{E}[f''(Y) - Yf'(Y)] = 0 \quad \text{ for all } f \in C_b^2(\mathbb{R}).$$

The operator $G: C_b^2(\mathbb{R}) \to C(\mathbb{R})$,

$$Gf(x) = f''(x) - xf'(x), \tag{4}$$

is known as the Stein operator.

Stein operator via generator

 $\pi = (1/4, 1/4, 1/2)$ is the unique distribution on $\mathcal{S} = \{1, 2, 3\}$ satisfying

$$[-3f(1) + 2f(2) + f(3)]\pi(1) + [f(1) - 2f(2) + f(3)]\pi(2) + [f(1) + (0)f(2) - f(3)]\pi(3) = 0$$
 (5)

for all f. In vector form, (5) becomes

$$\int_{S} Gf(y)\pi(dy) = 0 \quad \text{or } \mathbb{E}[Gf(Y)] = 0$$

where

$$Y \sim \pi$$
, $G = \begin{pmatrix} -3 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 0 & -1 \end{pmatrix}$, $f = \begin{pmatrix} f(1) \\ f(2) \\ f(3) \end{pmatrix} \in \mathbb{R}^3$.

Basic Adjoint Relationship

• Suppose $Y = \{Y(t), t \ge 0\}$ is a CTMC on $S = \{1, 2, 3\}$ with rate matrix

$$G = \begin{pmatrix} -3 & 2 & 1\\ 1 & -2 & 1\\ 1 & 0 & -1 \end{pmatrix}.$$

• $\pi = (\pi(1), \pi(2), \pi(3))$ is the unique distribution that satisfies

$$\pi G = (0, 0, 0),$$

which is equivalent to (5)

$$\pi G \begin{pmatrix} f(1) \\ f(2) \\ f(3) \end{pmatrix} = 0 \quad \text{for each } f = \begin{pmatrix} f(1) \\ f(2) \\ f(3) \end{pmatrix} \in \mathbb{R}^3.$$

Generator for Markov chains

• For the CTMC $Y = \{Y(t), t \ge 0\},\$

$$f(Y(t)) - \int_0^t Gf(Y(s))ds$$

is a martingale for each "good" $f: \mathcal{S} \to \mathbb{R}$.

• For a DTMC with transition matrix P,

$$f(Y(n)) - \sum_{k=1}^{n-1} (P-I)f(Y(k))$$

is a martingale. Thus, G = P - I is the generator for a DTMC.

Generator of diffusions

• Given $b: \mathbb{R}^n \to \mathbb{R}$ and $\sigma: \mathbb{R}^n \to \mathbb{R}^m$, the diffusion process with drift b and diffusion coefficient σ satisfies the SDE

$$Y(t) = Y(0) + \int_0^t b(Y(s))ds + \int_0^t \sigma(Y(s))dB(s).$$

By Ito's formula,

$$f(Y(t)) - \int_0^t Gf(Y(s))ds$$

is a martingale for each "good" $f: \mathbb{R}^n \to \mathbb{R}$, where

$$Gf(x) = \sum_{i=1}^{n} b_i(x) \frac{\partial}{\partial x_i} f(x) + \frac{1}{2} \sum_{i,j=1}^{n} (\sigma(x)\sigma(x)')_{ij} \frac{\partial}{\partial x_i \partial x_j} f(x)$$

Basic Adjoint Relationship

Lemma

For a Markov process $Y = \{Y(t), t \geq 0\}$ with generator G that has a unique stationary distribution π , the distribution π is uniquely characterized by the Basic Adjoint Relationship

$$\int_{\mathcal{S}} Gf(y)\pi(dy) = 0 \quad \text{for all "good" } f.$$
 (6)

- Echeverria (1982): Markov processes without boundary.
- Weiss (1981): Markov processes with boundaries.
- Harrison and Williams (1987), D-Kurtz (1994), semimartingale reflecting Brownian motions (SRBMs).
- Kang-Ramanan (2014), reflecting diffusion
- Glynn and Zeevi (2008, *Kurtz Festschrift*) provides sufficient conditions on f for (14) to hold for Markov chains.

Stationary distribution

- Every distribution is the stationary distribution of some Markov process with generator G.
- G is not necessarily unique.
- Barbour (1988) made the first connection.
- In our cases, the generator for Y comes naturally

Normal as a stationary distribution

• N(0,1) is the unique stationary distribution of the Ornstein-Uhlenbeck (OU) process. OU process is a diffusion process

$$Y(t) = Y(0) + \int_0^t b(Y(s))ds + \int_0^t \sigma(Y(s))dB(s),$$

with drift b(x) = -x and diffusion coefficient $\sigma(x) = \sqrt{2}$. The generator for the OU process is

$$Gf(x) = f''(x) - xf'(x).$$

• BAR:

$$\int_{-\infty}^{\infty} \left(f''(x) - xf'(x) \right) \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx = 0 \quad \text{for all } f \in C_b^2(\mathbb{R}).$$

Exponential as a stationary distribution

• Exp(1) is the stationary distribution of a reflected Brownian motion (RBM) on \mathbb{R}_+ . It has the generator

$$Gf(x) = f''(x) - f'(x)$$
 for $x \ge 0$, $f'(0) = 0$.

• BAR:

$$\int_0^\infty (f''(x) - f'(x))e^{-x}dx = 0 \quad \text{for all}$$
$$f \in C_b^2(\mathbb{R}_+) \text{ with } f'(0) = 0.$$

Poisson as a stationary distribution

• Poisson(1) is the stationary distribution of a birth-death process with birth rate 1 and death rate $\mu(x) = x$ in state x. It has the generator

$$Gf(x) = (f(x+1) - f(x)) + x(f(x-1) - f(x))$$
 for $x \in \mathbb{Z}_+$

- In steady-state, the number of customers in $M/M/\infty$ system has a Poisson distribution.
- BAR: $\pi(x) = \frac{1}{x!}e^{-1}$, $x \in \mathbb{Z}_+$, is the unique distribution satisfying

$$\sum_{x=0}^{\infty} Gf(x)\pi(x) = 0 \quad \text{ for all bounded } f.$$

Poisson equation (Stein equation)

Long-run average cost of a CTMC

• Suppose $Y = \{Y(t), t \ge 0\}$ is a CTMC on $S = \{1, 2, 3\}$ with generator

$$G = \begin{pmatrix} -3 & 2 & 1\\ 1 & -2 & 1\\ 1 & 0 & -1 \end{pmatrix}.$$

• Then $\pi = (\pi(1), \pi(2), \pi(3)) = (1/4, 1/4, 1/2)$ is the stationary distribution, and

$$\eta = \mathbb{E}[h(Y(\infty))] = h(1)\frac{1}{4} + h(2)\frac{1}{4} + h(3)\frac{1}{2}$$

is the long-run average cost.

• Computing η is equivalent to

finding
$$h(1)\pi(1) + h(2)\pi(2) + h(3)\pi(3)$$

subject $\pi G = 0$, f_h
 $\pi(1) + \pi(2) + \pi(3) = 1$ η .

Poisson equation for the CTMC

• (f_h, η) is a solution to dual equations

$$-3f_h(1) + 2f_h(2) + f_h(3) + h(1) = \eta$$

$$f_h(1) - 2f_h(2) + f_h(3) + h(2) = \eta$$

$$f_h(1) + (0)f_h(2) - f_h(3) + h(3) = \eta.$$

• Poisson equation (in vector form)

$$Gf_h + h = \eta \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Poisson Equation for a diffusion process

• Generator of a one-dimensional diffusion process $Y = \{Y(t), t \ge 0\}$

$$G_Y f(x) = \frac{1}{2} \sigma^2(x) f''(x) + b(x) f'(x)$$

• Given an $h: \mathbb{R} \to \mathbb{R}$, solve $f = f_h$ from the Poisson equation

$$G_Y f(x) = h(x) - \eta, \quad x \in \mathbb{R}.$$
 (7)

- The constant η must be $\mathbb{E}[h(Y(\infty))]$.
- For any random variable W

$$G_Y f(W) = h(W) - \mathbb{E}[h(Y(\infty))].$$

• Key identity

$$\mathbb{E}[h(W)] - \mathbb{E}[h(Y(\infty))] = \mathbb{E}[G_Y f(W)]. \tag{8}$$

An outline for proving Theorem 1

- Generator coupling
- Taylor expansion
- Derivative bounds
- Moment bounds

Generator Coupling

Setting
$$W = \tilde{X}(\infty)$$
 = $\frac{1}{\sqrt{R}}(X(\infty) - R)$ in (8),

$$\mathbb{E}[h(\tilde{X}(\infty))] - \mathbb{E}[h(Y(\infty))] = \mathbb{E}[G_Y f_h(\tilde{X}(\infty))]$$

$$= \mathbb{E}[G_Y f_h(\tilde{X}(\infty))] - \mathbb{E}[G_{\tilde{X}} f_h(\tilde{X}(\infty))]$$

$$= \mathbb{E}[G_Y f_h(\tilde{X}(\infty)) - G_{\tilde{X}} f_h(\tilde{X}(\infty))].$$

- $\tilde{X}(\infty)$ lives on grid $\{x = \delta(i R), i \in \mathbb{Z}_+\}, \ \delta = 1/\sqrt{R}$.
- The generator of birth-death process \tilde{X} is

$$G_{\tilde{X}}f_h(x) = \lambda \Big(f_h(x+\delta) - f_h(x) \Big) + \mu(i \wedge n) \Big(f_h(x-\delta) - f_h(x) \Big).$$

Taylor Expansion

• To bound

$$\mathbb{E}\Big[G_Y f_h(\tilde{X}(\infty)) - G_{\tilde{X}} f_h(\tilde{X}(\infty))\Big],$$

one bounds

$$|G_Y f_h(x) - G_{\tilde{X}} f_h(x)|$$
 for $x = \delta(i - R)$ with $i \in \mathbb{Z}_+$.

Conduct Taylor expansion

$$G_{\tilde{X}}f_h(x) = f'_h(x)\delta(\lambda - \mu(i \wedge n)) + \frac{1}{2}f''_h(x)\delta^2(\lambda + \mu(i \wedge n))$$
+ higher order term
$$= f'_h(x)\delta(\lambda - \mu(i \wedge n)) + \frac{1}{2}f''_h(x)\delta^2(2\lambda)$$

$$-\frac{1}{2}f''(x)\delta^2(\lambda - \mu(i \wedge n))$$
+ higher order term
$$\left. + \text{ higher order term} \right\} \text{ error.}$$

Approximation

• One can check that $\delta^2 \lambda = \mu$ and

$$\delta(\lambda - \mu(i \wedge n)) = \mu((x + \zeta)^{-} + \zeta) = b(x).$$

• From the CTMC generator we extract

$$\begin{split} G_{\tilde{X}}f_h(x) &= f_h'(x)b(x) + \mu f_h''(x) \\ &- \frac{1}{2}\delta f_h''(x)b(x) + \text{higher order terms} \\ &= G_Y f_h(x) - \frac{1}{2}\delta f_h''(x)b(x) + \text{higher order terms}. \end{split}$$

Typical error term

$$\delta \mathbb{E} |f_h''(\tilde{X}(\infty))b(\tilde{X}(\infty))|, \qquad |b(x)| \le \mu |x|$$

Gradient bounds

Lemma (Braverman-Dai-Feng '16)

For all $\lambda > 0, n \ge 1$, and $\mu > 0$ satisfying $n \ge 1$,

$$|f_h''(x)|, |f_h'''(x)| \le C(\mu, \zeta) ||h'||,$$

where

$$\zeta = \frac{R - n}{\sqrt{R}}.$$

- Kusuoka and Tudor '12.
- Standard basket of gradient bounds known: normal,
 Poisson, exponential... but each new diffusion requires own gradient bounds
- The constant $C(\mu, \zeta)$ is known as the Stein factor.

Moment bounds

Lemma (Braverman-Dai-Feng '16)

For all $\lambda > 0$, $n \ge 1$, and $\mu > 0$ satisfying $n \ge 1$,

$$\mathbb{E}\big[\big|\tilde{X}(\infty)\big|\big] \le C(\mu,\zeta),$$

where

$$\zeta = \frac{R - n}{\sqrt{R}}.$$

• Proof: Lyapunov function.

Combining all the components

- Derive diffusion generator G_Y via Taylor expansion.
- Poisson equation and BAR:

$$\begin{aligned} & \left| \mathbb{E}[h(\tilde{X}(\infty))] - \mathbb{E}[h(Y(\infty))] \right| \\ &= \left| \mathbb{E}\Big[G_Y f_h(\tilde{X}(\infty)) - G_{\tilde{X}} f_h(\tilde{X}(\infty)) \Big] \right| \\ &\leq \frac{1}{2} \delta \mathbb{E}|f_h''(\tilde{X}(\infty)) b(\tilde{X}(\infty))| + \delta^2 \mathbb{E}|f_h'''(\dots) \end{aligned}$$

Apply gradient bounds and moment bounds to conclude

$$\left| \mathbb{E}[h(\tilde{X}(\infty))] - \mathbb{E}[h(Y(\infty))] \right| \le \delta C.$$

More results

- Erlang-C, Kolmogorov metric
- Erlang-A, Wasserstein metric
- M/Ph/n + M, quality- and efficiency-driven (QED) regime

Kolmogorov Metric Version of Theorem 1

Theorem 1 (Part b)

For all $n \ge 1$, $\lambda > 0$ and $\mu > 0$ with $1 \le R < n$,

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P}\{\tilde{X}(\infty) \le x\} - \mathbb{P}\{Y(\infty) \le x\} \right| \le \frac{190}{\sqrt{R}}.$$

Erlang-A: M/M/n + M

• Re-center: $\tilde{X}(\infty) = \frac{1}{\sqrt{R}}(X(\infty) - R)$

Theorem 1 (Part c, Braverman, Dai, & Feng '16)

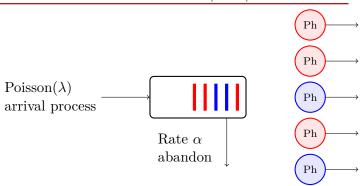
When mean patience $1/\alpha < \infty$ and $R \ge 1$,

$$d_W\left(\tilde{X}^{(\lambda,\mu,n,\alpha)}(\infty),Y^{(\lambda,\mu,n,\alpha)}(\infty)\right) \leq \frac{C(\alpha/\mu)}{\sqrt{R}}.$$

More results

- Gurvich, Huang & Mandelbaum '14
- Glynn & Ward '03

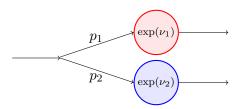
A fundamental model: M/Ph/n + M



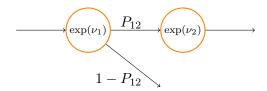
- n homogeneous servers.
- Phase-type i.i.d. service times with mean $1/\mu$.
- Patience times i.i.d. exponential with rate $\alpha > 0$.
- Offered load $R = \lambda/\mu < n$.
- Admits a continuous time Markov chain (CTMC) representation. Unique stationary distribution.

Phase-Type (Ph) distributions

• A two-phase, hyper-exponential (H_2) example:



• A two-phase, Coxian (C_2) example:



• A general d-phase distribution has inputs (p, P, ν) . More results

Why phase-type?

A phase-type distribution can approximate any service time distribution (Asmussen, '03).

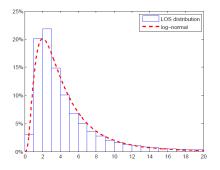
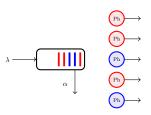


Figure: Length of stay (in days) distribution of Singapore hospital, Shi et al. '16

Customer count



- Let $X_1(t)$ be the number of type 1 customers in system at time t.
- Let $X_2(t)$ be the number of type 2 customers in system at time t.
- Denote

$$X(\infty) = (X_1(\infty), X_2(\infty)).$$

to be the random vector having the stationary distribution.

Main results – Wasserstein bounds

- Let $\beta \in \mathbb{R}$ be fixed.
- Assume Quality- and Efficiency-Driven (QED) regime, also known as the Halfin-Whitt '81 regime:

$$n = R + \beta \sqrt{R}. (9)$$

Main results – Wasserstein bounds

- Let $\beta \in \mathbb{R}$ be fixed.
- Assume Quality- and Efficiency-Driven (QED) regime, also known as the Halfin-Whitt '81 regime:

$$n = R + \beta \sqrt{R}. (9)$$

• Set $\tilde{X}(\infty) = \frac{X(\infty) - \gamma R}{\sqrt{R}}$. In red/blue case, $\gamma_1 = \frac{p_1/\nu_1}{p_1/\nu_1 + p_2/\nu_2}$.

Main results – Wasserstein bounds

- Let $\beta \in \mathbb{R}$ be fixed.
- Assume Quality- and Efficiency-Driven (QED) regime, also known as the Halfin-Whitt '81 regime:

$$n = R + \beta \sqrt{R}. (9)$$

• Set $\tilde{X}(\infty) = \frac{X(\infty) - \gamma R}{\sqrt{R}}$. In red/blue case, $\gamma_1 = \frac{p_1/\nu_1}{p_1/\nu_1 + p_2/\nu_2}$.

Theorem 2 (Part a, Braverman & Dai '17)

Assume $\alpha > 0$. There exists a constant $C = C(\alpha, \beta, p, P, \nu)$ such that

$$\sup_{h \in \text{Lip}(1)} \left| \mathbb{E}h(\tilde{X}^{(n)}(\infty)) - \mathbb{E}h(Y(\infty)) \right| \le \frac{C}{\sqrt{R}}, \quad \forall n \ge 1, \quad (10)$$

where $Lip(1) = \{h : |h(x) - h(y)| \le |x - y|\}.$

Higher moments

Theorem 2 (Part b, Braverman & Dai '17)

For any m > 0, there is a constant $C_m = C_m(\alpha, \beta, p, P, \nu)$, such that if $h(x) : \mathbb{R}^d \to \mathbb{R}$ is continuous and satisfies

$$|h(x)| \le |x|^m,$$

then

$$\left| \mathbb{E}h(\tilde{X}^{(n)}(\infty)) - \mathbb{E}h(Y(\infty)) \right| \le \frac{C_m}{\sqrt{R}}, \quad \forall n \ge 1.$$

Piecewise OU process

Process corresponding to Theorem 2 is multidimensional piecewise Ornstein–Uhlenbeck (OU) process $Y=\{Y(t), t\geq 0\}$.

- Y has stationary distribution $Y(\infty)$; Dieker & Gao '13.
- There is an algorithm to compute the distribution of $Y(\infty)$; Dai & He '13

Piecewise OU Process (cont.)

• Let $Y = \{Y(t) \in \mathbb{R}^d, t \ge 0\}$ be the piece-wise OU process satisfying

$$Y(t) = Y(0) - p\beta t - R \int_0^t \left(Y(s) - p(e'Y(s))^+ \right) ds$$
$$-\alpha p \int_0^t \left(e'Y(s) \right)^+ ds + \sqrt{\Sigma} B(t).$$

• B(t) is the standard d-dimensional Brownian motion,

$$\Sigma = \operatorname{diag}(p) + \sum_{k=1}^{a} \gamma_k \nu_k H^k + (I - P^T) \operatorname{diag}(\nu) \operatorname{diag}(\gamma) (I - P),$$

$$H_{ii}^k = P_{ki}(1 - P_{ki}), \quad H_{ij}^k = -P_{ki}P_{kj} \quad \text{for } j \neq i.$$

- e' = (1, ..., 1) and $R = (I P') \operatorname{diag}(\nu)$.
- The drift vector

$$b(x) = -\beta p - R(x - p(e'x)) - \alpha p(e'x)^{+} \quad x \in \mathbb{R}^{d}.$$

Example: an $M/C_2/1000 + M$ system

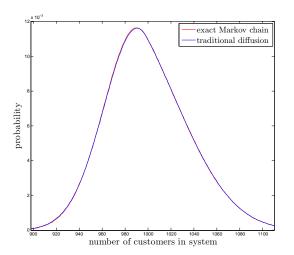


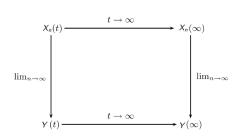
Figure: R = 1000. "Traditional diffusion" – Dai, He, & Tezcan ('10)

Justifying diffusion approximations

- Process-level convergence (Functional Central Limit Theorem)
 - Iglehart & Whitt '70
 - Reiman '84
- Steady-state convergence (limit interchange)
 - Gamarnik & Zeevi '06
 - Budhiraja & Lee '09
- Steady-state convergence rates creating a new standard
 - Gurvich, Huang, & Mandelbaum '14
 - Gurvich '14, Diffusion models and steady-state approximations for exponentially ergodic Markovian queues, Annals of Applied Probability.
 - Brayerman & Dai '17 Stein method framework

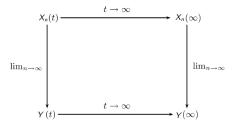
Limit Interchange Justifications

- Networks of single-server queues
 - Gamarnik & Zeevi (2006)
 - Budhiraja & Lee (2009)
 - Zhang & Zwart (2008)
 - Katsuda (2010, 2011)
 - Yao & Ye (2012)
 - Gurvich (MOR, 2014)
- Many-server systems
 - Tezcan (2008)
 - Gamarnik & Stolyar (2012)
 - D., Dieker & Gao (2014)
- No convergence rates



High-order approximation (Engineering solution)

- Erlang-C
- M/Ph/n
- Hospital model



An M/M/250 System

Consider $x = (i - R)/\sqrt{R}$, where $i = 0, 1, 2, 3, \dots$

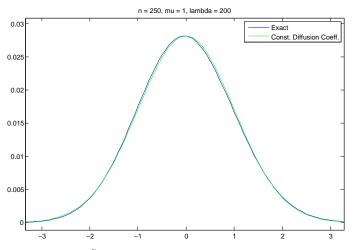


Figure: $P(\tilde{X}(\infty) = x)$, $\mathbb{P}(x - 0.5 \le Y(\infty) \le x + 0.5)$

An M/M/5 System

• With only 5 servers, diffusion approximation not as good.

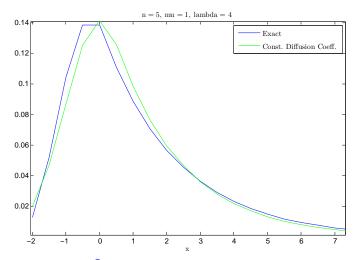


Figure: $P(\tilde{X}(\infty) = x)$, $\mathbb{P}(x - 0.5 \le Y(\infty) \le x + 0.5)$

High Order Approximation – M/M/5

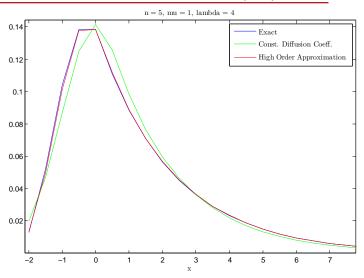
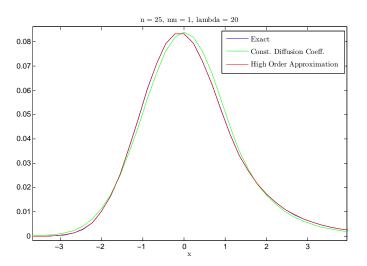


Figure: $\mathbb{P}(x - 0.5 \le Y_H(\infty) \le x + 0.5)$

High Order Approximation – M/M/25



High order results

	n =	5	n = 500		
λ	$\mathbb{E}X(\infty)$	Error	λ	$\mathbb{E}X(\infty)$	Error
3	3.35	1.62×10^{-2}	300	300.00	2.86×10^{-13}
4	6.22	2.39×10^{-2}	400	400.00	1.06×10^{-7}
4.9	51.47	2.85×10^{-2}	490	516.79	2.79×10^{-3}
4.95	101.48	2.87×10^{-2}	495	569.15	3.13×10^{-3}
4.99	501.49	2.89×10^{-2}	499	970.89	3.38×10^{-3}

Reminder: constant $\sigma^2(x) = 2\mu$

n = 5			n = 500			
7	١	$\mathbb{E}X(\infty)$	Error	λ	$\mathbb{E}X(\infty)$	Error
	3	3.35	0.10	300	300.00	6×10^{-14}
4	1	6.22	0.20	400	400.00	2×10^{-6}
4.9	9	51.47	0.28	490	516.79	0.24
4.95	5	101.48	0.29	495	569.15	0.28
4.99	9	501.49	0.29	499	970.89	0.32

Faster convergence rates

Theorem (Braverman & Dai '15)

There is a constant $C_{W_2} > 0$ such that for all $n \ge 1, \lambda > 0, \mu > 0, 1 \le R < n,$

$$\sup_{h \in W_2} \left| \mathbb{E}h(\tilde{X}^{(\lambda,\mu,n)}(\infty)) - \mathbb{E}h(Y_H^{(\lambda,\mu,n)}(\infty)) \right| \leq \frac{C_{W_2}}{R},$$

$$W_2 = \{ h : \mathbb{R} \to \mathbb{R}, \ |h(x) - h(y)| \le |x - y|, |h'(x) - h'(y)| \le |x - y| \}.$$

- Key: use state dependent diffusion coefficient.
- Mandelbaum, Massey, & Reiman '98, Glynn & Ward '03.

Deriving High order approximation

• Recall the Taylor expansion

$$G_{\tilde{X}}f_h(x) = f'_h(x)b(x) + \mu f''_h(x) - \frac{1}{2}\delta b(x)f''_h(x)$$
+ higher order terms

Recall the Taylor expansion

$$G_{\tilde{X}}f_h(x) = f'_h(x)\delta\left(\lambda - \mu(i \wedge n)\right) + \frac{1}{2}f''_h(x)\delta^2\left(\lambda + \mu(i \wedge n)\right) + \frac{1}{6}f'''_h(x)\delta^3\left(\lambda - \mu(i \wedge n)\right) + \text{ fourth order term}$$

$$= b(x)f'(x) + \left(\mu - \delta b(x)/2\right)f''(x) + \frac{1}{6}\delta^3f'''_h(x)b(x) + \text{ fourth order term}$$

Use entire second order term and bound

$$\delta \mathbb{E} |f_h'''(\tilde{X}(\infty))b(\tilde{X}(\infty))|, \qquad |b(x)| \le \mu |x|$$

High Order Approximation

• $Y_H(\infty)$ – corresponds to diffusion process with generator

$$G_{Y_H} f(x) = \frac{1}{2} \sigma^2(x) f''(x) + b(x) f'(x), \quad f \in C^2(\mathbb{R}),$$

$$\sigma^2(x) = \mu + (\mu - \delta b(x)) 1(x \ge -\sqrt{R}) \ge \mu, \quad x \in \mathbb{R}.$$

• Previously, used $\sigma^2(x) = 2\mu$.

Theorem 3 (High Order Approximation, Braverman-D 2015)

 $\exists C_{W_2} > 0$ (explicit) such that for all $n \geq 1, 1 \leq R < n$,

$$\sup_{h \in W_2} \left| \mathbb{E}h(\tilde{X}(\infty)) - \mathbb{E}h(Y_H(\infty)) \right| \le C_{W_2} \frac{1}{R},$$

$$W_2 = \{ h : \mathbb{R} \to \mathbb{R}, \ |h(x) - h(y)| \le |x - y|, |h'(x) - h'(y)| \le |x - y| \}.$$

AMPLE RESULT STEIR'S METHOD ROUNDS MORE RESULTS ENGINEERING SOLUTION MODERATE

Example: an $M/C_2/20 + M$ system

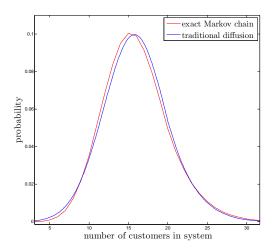


Figure: R = 16 (80% utilization).

$M/C_2/20 + M$: High order

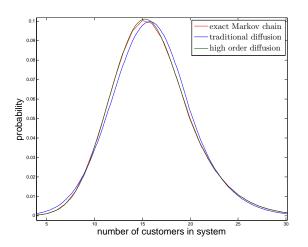
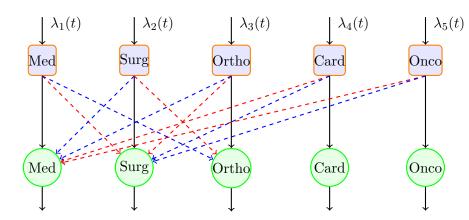


Figure: R = 16 (80% utilization). High order approximation no more expensive to compute.

Hospital boarding time (Dai and Shi)

Boarding patient — a patient who finishes treatment in ED and waits to be transferred to the inpatient department (a ward)

Patient overflow



Basic ideas of two-time-scale approach

- Daily scale analysis
 - The daily arrival and discharge determine the midnight customer count

$$X_{k+1} = X_k + A_k - D_k, \quad k = 0, 1, \dots,$$

- D_k is binomial $(\min(X_k, N), \mu)$
- $\{X_k\}$ forms a discrete time Markov chain and its stationary distribution π can be computed exactly or approximately
- Hourly scale analysis
 - The arrival rate pattern and discharge timing determine the time-of-day customer count

$$X(t) = X(0) + A_{(0,t]} - D_{(0,t]}, \quad t \in [0,1),$$

- Given $X(0), D_{(0,t]}$ is binomial $\Big(\min(X(0),N), \mu H(t)\Big)$ for $t \in [0,1)$
- When $X(0) \sim \pi$, system is in a periodic steady state (Liu-Whitt 2011)

Generator coupling

Define

$$G_{\tilde{X}}f(x) = \mathbb{E}[f(x+\delta(A-D_n)) - f(x)]$$
 for $x = \delta(n-N)$, (11)

the generator for the scaled process

$$\tilde{X} = \{\delta(X_k - N) : k = 0, 1, \ldots\}: \ \tilde{X}_{k+1} = \tilde{X}_k + (A_k - D_k)\delta.$$

Basic adjoint relation (BAR): $\mathbb{E}f(X_{k+1}) = \mathbb{E}f(X_k)$ as $k \to \infty$.

$$\mathbb{E}[G_{\tilde{X}}f(\tilde{X}_{\infty})] = 0. \tag{12}$$

From (8), we have

$$\begin{split} \mathbb{E}[h(\tilde{X}_{\infty})] - \mathbb{E}[h(Y_{\infty})] &= \mathbb{E}[G_Y f(\tilde{X}_{\infty})] \\ &= \mathbb{E}[G_Y f(\tilde{X}_{\infty}) - G_{\tilde{X}} f(\tilde{X}_{\infty})]. \end{split}$$

- $\tilde{X}_{\infty} = \delta(X_{\infty} N)$ is the scaled customer count
- Y_{∞} has the stationary distribution of a diffusion

Taylor expansion

For
$$x = \delta(n - N)$$
,

$$G_{\tilde{X}}f(x) = \mathbb{E}[f(x + \delta(A - D_n)) - f(x)]$$

$$= f'(x)\delta\mathbb{E}(A - D_n) + \frac{1}{2}f''(x)\delta^2\mathbb{E}[(A - D_n)^2]$$

$$+ \frac{1}{6}\delta^3\mathbb{E}[f'''(\xi)(A - D_n)^3]$$

$$= G_Y f(x) + \frac{1}{6}\delta^3\mathbb{E}[f'''(\xi)(A - D_n)^3],$$

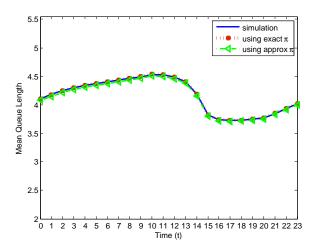
where

$$\delta \mathbb{E}(A - D_n) = b(x) = \delta(\Lambda - N\mu) + \mu x^-,$$

 $\delta^2 \mathbb{E}[(A - D_n)^2] = \sigma^2(x).$

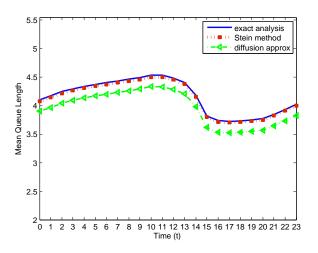
When $\mu = C_1/N$, derivative and moment bounds: $||f'''|| \le C_2/\mu$, $\mathbb{E}[(A - D_n)^3] \le C_3$.

Average number of boarding patients



High order approximation: state-dependent $\sigma^2(x)$ (N=18, Dai-Shi 2016)

Average number of boarding patients



Moderate Deviations

Cramér type moderate deviations

Assume X_1, X_2, \ldots i.i.d. with $\mathbb{E}(X_1) = 0$, $\mathbb{E}X_1^2 = 1$ and $\mathbb{E}\exp(t_0|X_1|) < \infty$ for some $t_0 > 0$. Set $W^n = \sum_{i=1}^n X_i/\sqrt{n}$.

• Central limit theorem:

$$W^n \Rightarrow Z \sim N(0,1).$$

• Berry-Esseen bounds

$$\sup_{x \in \mathbb{R}} |\mathbb{P}\{W^n \ge x\} - \mathbb{P}\{Z \ge x\}| \le \frac{0.33554(\mathbb{E}|X_1|^3 + 0.415)}{\sqrt{n}}.$$

Moderate deviations

$$\frac{\mathbb{P}\{W^n \ge z\}}{\mathbb{P}\{Z \ge z\}} = 1 + O(1) \frac{(1+z^3)\mathbb{E}|X_1|^3}{\sqrt{n}}$$

for $0 \le z \le n^{1/6}/(\mathbb{E}|X_1|^3)^{1/3}$.

Moderate Deviations for Erlang-C

Assume that

$$n = R + \beta \sqrt{R}.$$

Theorem 4 (Braverman, Dai, and Fang '17)

Fix a $\beta > 0$. There exists a constant $C = C(\beta)$ such that

$$\left| \frac{\mathbb{P}\{\tilde{X}(\infty) \ge z\}}{\mathbb{P}\{Y(\infty) \ge z\}} - 1 \right| \le \frac{C}{\sqrt{R}} (1+z) \tag{13}$$

for $0 \le z \le \sqrt{R}$.

$$\left| \frac{\mathbb{P}(\tilde{X}(\infty) \ge z)}{\mathbb{P}(\tilde{Y}_H(\infty) \ge z)} - 1 \right| \le \frac{C(\beta)}{\sqrt{R}} + C(\beta) \min \left\{ \frac{1}{R} (z \lor 1), 1 \right\}.$$

Moderate deviations

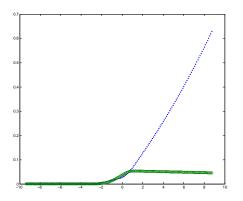


Figure: $n = 100, \rho = 0.9$. The plot above shows the relative error of approximating $\mathbb{P}(\tilde{X}(\infty) \geq z)$. The x-axis displays the value of z; when z = 8, $\mathbb{P}(X(\infty) \ge z) \approx 10^{-4}$. The blue dots correspond to $\frac{\mathbb{P}(\tilde{X}(\infty) \geq z)}{\mathbb{P}(Y(\infty) > z)} - 1$. The green circles correspond to $\left| \frac{\mathbb{P}(X(\infty) \geq z)}{\mathbb{P}(Y_H(\infty) > z)} - 1 \right|$.

Large deviations or moderate deviations?

- 5% of patients have to wait six hours or longer to get a bed
- 4% passengers cannot get a Uber car in 10 minutes
- packet loss rate 10^{-6} large deviations

Proof outline: basic adjoint relationship

- $W = \tilde{X}(\infty)$ lives on grid $\{x = \delta(i R), i \in \mathbb{Z}_+\},\$ $\delta = 1/\sqrt{R}.$
- The generator of birth-death process \tilde{X} is

$$G_{\tilde{X}}f(x) = \lambda \Big(f(x+\delta) - f(x) \Big) + \mu(i \wedge n) \Big(f(x-\delta) - f(x) \Big)$$
$$= \lambda \Big(f(x+\delta) - f(x) \Big) + (\lambda - b(x)/\delta) \Big(f(x-\delta) - f(x) \Big)$$

Basic adjoint relationship:

$$\mathbb{E}\left[\lambda(f(W+\delta)-f(W))+\left(\lambda-\frac{b(W)}{\delta}\right)(f(W-\delta)-f(W))\right]=0$$

for each "good" f.

BAR: an alternative form

Using
$$f(b) - f(a) = \int_a^b f'(s)ds$$
 and $f'(b) - f'(a) = \int_a^b f''(s)ds$,

$$\mathbb{E}[-b(W)f'(W)] = \mathbb{E}\left[\int_0^{\delta} f''(W+t)\lambda(\delta-t)dt + \int_{-\delta}^0 f''(W+t)\left(\lambda - \frac{b(W)}{\delta}\right)(t+\delta)dt\right]$$
$$= \mathbb{E}\left[\int_{|t| \le \delta} f''(W+t)K(W,t)dt\right]. \tag{14}$$

Fact:

$$\int_{|t|<\delta} K(W,t)dt = \mu - \delta b(W).$$

Challenges and opportunities

- Multi-dimensional diffusion processes; gradient estimates are difficult
- Mean-field models; (Ying 2016, 2017), Nicolas Gast (2017)

Multi-dimensional Gradient Bounds

Lemma (Gurvich (2015))

Suppose $|h(x)| \le |x|^{2m}$ for some m > 0, then the solution to Poisson equation satisfies

$$|f(x)| \le C_m (1+|x|^2)^m,$$

 $|Df(x)| \le C_m (1+|x|^2)^m (1+|x|),$
 $|D^2 f(x)| \le C_m (1+|x|^2)^m (1+|x|)^2,$

$$\sup_{|y-x|<1, y\neq x} \frac{\left|D^2 f(x) - D^2 f(y)\right|}{|x-y|} \le C_m (1+|x|^2)^m (1+|x|)^3.$$

Gradient Bounds for Elliptic PDEs

- Based on Gurvich (2015).
- Consider the elliptic differential operator

$$Lf(x) = \sum_{1 \le i,j \le d} a_{ij} D_{ij} f(x) + \sum_{1 \le i \le d} b_i(x) D_i f(x).$$

- The matrix A defined by $A_{ij} = a_{ij}$ is positive definite.
- $b(x) = (b_1(x), ..., b_d(x))$ satisfies the Lipschitz condition

$$|b(x) - b(y)| \le c_b |x - y|.$$

Schauder Interior Estimates

• For $x \in \mathbb{R}^d$, let $B_x = \{ y \in \mathbb{R}^d : |y - x| \le \frac{1}{1 + |x|} \}$.

Lemma (Gilbarg & Trudinger (2001))

Let f(x) be a solution to the PDE

$$Lf(x) = h(x).$$

There exists a constant C depending only on A and c_b , such that

$$|Df(x)| + |D^{2}f(x)| + \sup_{y,z \in B_{x}, y \neq z} \frac{|D^{2}f(z) - D^{2}f(y)|}{|z - y|}$$

$$\leq C \left(\sup_{y \in B_{x}} |f(y)| + \sup_{y \in B_{x}} |h(y)| + \sup_{y,z \in B_{x}, y \neq z} \frac{|h(z) - h(y)|}{|z - y|} \right) (1 + |x|)^{3}.$$

Lyapunov Functions

• If the elliptic operator L is the generator of some diffusion process $Y = \{Y(t), t \ge 0\}$, then the solution to

$$G_Y f(x) = h(x) - \mathbb{E}h(Y(\infty)) =: \tilde{h}(x)$$

satisfies

$$f_h(x) = \int_0^\infty \mathbb{E}_x \tilde{h}(Y(t)) dt.$$

• Suppose we know that

$$|\mathbb{E}_x h(Y(t)) - \mathbb{E}h(Y(\infty))| \le V(x)e^{-\eta t}, \quad \eta > 0.$$

Then

$$|f(x)| \le \int_0^\infty \left| \mathbb{E}_x \tilde{h}(Y(t)) \right| dt \le CV(x).$$

Networks of single-server queues and an open problem

A G/G/1 Queue

Consider a single-server queue operating under first-come-first-serve discipline.

- A, A_1, A_2, \dots i.i.d. inter-arrival times with mean $1/\lambda = 1$.
- S, S_1, S_2, \dots i.i.d. service times with mean m.
- Traffic intensity $\rho = \lambda m = m$.

Lindley recursion for waiting times:

• Recursive formula for W_n – the nth customer's waiting time in queue:

$$W_{n+1} = (W_n + S_n - A_{n+1})^+, \qquad x^+ := \max(x, 0).$$

• A_n, S_n – inter-arrival and service time of nth customer, respectively.

Steady-State Behavior in Heavy Traffic

- Steady-state customer waiting time $W(\infty)$.
- As $\rho = m \uparrow 1$, $W(\infty) \to \infty$.
- The scaled version $W = (1 \rho)W(\infty)$ does not blow up.

$$\widetilde{W}^* \stackrel{d}{=} (\widetilde{W} + (1 - \rho)X)^+,$$

where

$$\widetilde{W}^* \stackrel{d}{=} \widetilde{W}, \quad X \perp \widetilde{W}, \quad X \stackrel{d}{=} S - A, \quad \mathbb{E}X = m - \frac{1}{\lambda} = \rho - 1.$$

Define

$$G_{\widetilde{W}}f(w) := \mathbb{E}\left[f((w + (1 - \rho)X)^{+})\right] - f(w), \quad w \ge 0.$$

Basic Adjoint Relationship (BAR)

For all 'nice' functions f, we have BAR

$$\mathbb{E}\left[G_{\widetilde{W}}f(\widetilde{W})\right] = \mathbb{E}\left[f\left((\widetilde{W} + (1-\rho)X)^{+}\right) - f(\widetilde{W})\right] = 0,$$

where \widetilde{W} and X are independent.

• Suppose $f \in C^3(\mathbb{R})$, use Taylor expansion:

 $\mathbb{E} \left[f \left((\widetilde{W} + (1 - \rho)X)^{+} \right) - f(\widetilde{W}) \right]$

$$\begin{split} &= \mathbb{E}\Big[f\big(\widetilde{W} + (1-\rho)X\big) - f(\widetilde{W}) + \Big(f(0) - f(\widetilde{W} + (1-\rho)X)\Big)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}\Big[f'(\widetilde{W})(1-\rho)\mathbb{E}X + \frac{1}{2}f''(\widetilde{W})(1-\rho)^2\mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - \frac{1}{2}(\widetilde{W} + (1-\rho)X)^2f''(\eta)\mathbf{1}_{\{\widetilde{W} + (1-\rho)X\}} + \mathbb{E}X^2 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac{1}{6}(1-\rho)^3f'''(\xi)\mathbb{E}X^3 - f'(0)(1-\rho)\mathbb{E}X\Big] \\ &+ \mathbb{E}\Big[\frac$$

where we have used

$$\mathbb{E}\left[(\widetilde{W} + (1-\rho)X)1_{\{\widetilde{W} + (1-\rho)X \le 0\}}\right] = (1-\rho)\mathbb{E}X.$$

Poisson Equation and Gradient Bounds

Consider Poisson equation

$$G_Z f_h(w) := \frac{1}{2} \sigma^2 f_h''(w) - \theta f_h'(w) + \theta f_h'(0) = h(w) - \mathbb{E}h(Z),$$

where

$$\sigma^2 = (1 - \rho)^2 \mathbb{E} X^2, \quad \theta = -(1 - \rho) \mathbb{E} X > 0$$

and Z is an exponential random variable with mean $\sigma^2/2\theta$.

• A solution satisfying $f'_h(0) = 0$ also satisfies

$$||f_h''|| \le \frac{||h'||}{\theta}$$
 and $||f_h'''|| \le \frac{4}{\sigma^2} ||h'||$.

G/G/1 Waiting Time Approximation

Using Stein equation

$$\mathbb{E}h(\widetilde{W}) - \mathbb{E}h(Z) = \mathbb{E}\left[G_Z f_h(\widetilde{W})\right] - \mathbb{E}\left[G_W f_h(\widetilde{W})\right]$$
$$= (1 - \rho)^3 \mathbb{E}\left[\frac{1}{6}f'''(\xi)\right] \mathbb{E}X^3$$
$$- \mathbb{E}\left[\frac{1}{2}(\widetilde{W} + (1 - \rho)X)^2 f''(\eta) 1_{\{\widetilde{W} + (1 - \rho)X \le 0\}}\right],$$

we obtain:

Lemma

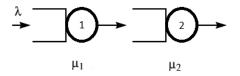
Assume $\mathbb{E}X^3 < \infty$. Then,

$$d_{\mathcal{W}}(\widetilde{W}, Z) \le C\sqrt{(1-\rho)}.$$

Furthermore, if $\mathbb{E}X^m < \infty$ for all $m \geq 1$, then for any $\epsilon > 0$, there exists a constant C_{ϵ} such that

Multidimensional SRBMs

Consider the $M/M/1 \rightarrow \cdot/M/1$ tandem system, we are interested in the queue lengths.



- Assume $\lambda = 1$. Heavy traffic: $\mu_i = \mu_i^{(n)}$ and $\lambda \mu_i^{(n)} = -\beta_i / \sqrt{n} < 0$.
- The approximating diffusion process is a two-dimensional semimartingale reflecting Brownian motion (SRBM)

$$Z = \{ (Z_1(t), Z_2(t)) \in \mathbb{R}^2_+, t \ge 0 \}.$$

• See Williams (1995) for a review of SRBMs.

boundary derivatives

Open Problem

Consider the operator

$$\mathcal{A}_n f(x) = \frac{1}{2} \sum_{i,j=1}^2 \sum_{i,j=1}^2 \sum_{i,j=1}^2 \frac{\partial^2 f(x)}{\partial x_i \partial x_j} + \sum_{i=1}^2 \nu_i \frac{\partial f(x)}{\partial x_i} + \sum_{i=1}^2 \beta_i \langle R^{(i)}, \nabla f(x) |_{x_i=0} \rangle,$$

where

$$\nu = \frac{1}{n} \begin{pmatrix} -\beta_1 \\ \beta_1 - \beta_2 \end{pmatrix}, \quad \Sigma = \frac{1}{n} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad R = \frac{1}{n} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

and $R^{(i)}$ is the *i*th column of R. If $h: \mathbb{R}^2_+ \to \mathbb{R}$ is a Lipschitz-1 function, **under what conditions on** $\langle R^{(i)}, \nabla f(x)|_{x_i=0} \rangle$, does the solution to the PDE

$$\mathcal{A}_n f_h(x) = h(x) - \mathbb{E}h(Z_n(\infty))$$

Fluid approximation: M/M/n

- $\{X(t), t \ge 0\}$ is a CTMC on $\{0, 1, 2, \ldots\}$.
- Setting $\epsilon_1 = \lambda(f'(\eta_1) f(i))$ and $\epsilon_2 = (i \wedge n)(f'(i) f(\eta_2)),$

$$G_X f(i) = \lambda (f(i+1) - f(i)) + i \wedge n (f(i-1) - f(i))$$

$$= \lambda f'(i) + \lambda (f'(\eta_1) - f'(i)) - (i \wedge n) f'(i)$$

$$+ (i \wedge n) (f'(i) - f'(\eta_2))$$

$$= (\lambda - i \wedge n) f'(i) + \epsilon_1(i) + \epsilon_2(i).$$

• Let $h(i) = -i + \lambda$. Solving Poisson equation

$$(\lambda - i \wedge n)f'(i) = h(i),$$

then,
$$\mathbb{E}h(X(\infty)) = \mathbb{E}[(\lambda - X(\infty) \wedge n)f'(X(\infty))].$$

Basic adjoint relationship

- Recall $G_X f(i) = (\lambda i \wedge n) f'(i) + \epsilon_1(i) + \epsilon_2(i)$.
- BAR: $\mathbb{E}[G_X f(X(\infty))] = 0$.
- Thus,

$$\mathbb{E}(X(\infty)) - \lambda = -\mathbb{E}h(X(\infty))$$

$$= -\mathbb{E}\Big[(\lambda - X(\infty) \wedge n)f'(X(\infty))\Big]$$

$$= \mathbb{E}\epsilon_1(X(\infty)) + \mathbb{E}\epsilon_2(X(\infty)),$$

where

$$\epsilon_1 = \lambda(f'(\eta_1) - f(i)),$$

$$\epsilon_2 = (i \wedge n)(f'(i) - f(\eta_2)).$$

Gradient estimates: M/M/n

• Recall that

$$f'(i) = \frac{i - \lambda}{i \wedge n - \lambda} = \begin{cases} -1 & \text{if } i < n, \\ \frac{i - \lambda}{n - \lambda} & \text{if } i \ge n. \end{cases}$$

- f'(i) increases in i, thus $\epsilon_1(i) \geq 0$ and $\epsilon_2(i) \geq 0$.
- $\epsilon_1(i) = \epsilon_2(i) = 0 \text{ for } i < n.$
- $\epsilon_1(i) \leq \frac{1}{n-\lambda}$ for $i \geq n$ and $\epsilon_2(i) \leq \frac{1}{n-\lambda}$ for $i \geq n$.
- Thus,

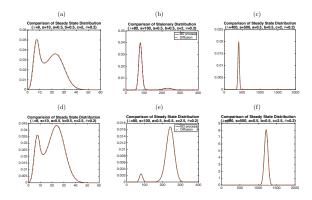
$$0 \le \mathbb{E}\epsilon_1(X(\infty)) + \mathbb{E}\epsilon_2(X(\infty)) \le (\lambda + n) \frac{1}{n - \lambda} \mathbb{P}\{X(\infty) \ge n\}.$$

$$0 \le \mathbb{E}(X(\infty)) - \lambda \le \left(\frac{\lambda + n}{n - \lambda}\right) \mathbb{P}\{X(\infty) \ge n\}.$$

Variance: M/M/n

Ying (2017): Assume
$$\mu = 1$$
. For $\rho = \lambda/n < 1$.

$$\mathbb{E}\left(\frac{X(\infty)-\lambda}{n}\right)^2 \le 6\frac{1+\rho}{n} + \frac{36}{n^2}\frac{1+\rho}{(1-\rho)^2},$$



References I

- Gurvich (2014), Diffusion models and steady-state approximations for exponentially ergodic Markovian queues, Annals of Applied Probability, 24, 2527-2559.
- Stolyar (2015), Tightness of stationary distributions of a flexible-server system in the Halfin-Whitt asymptotic regime, 5, Stochastic Systems, 239-267.
- Braverman and Dai (2017), Stein's method for steady-state diffusion approximations of M/Ph/n + M systems, Annals of Applied Probability, 27, 550-581.
- Braverman, Dai, and Feng (2016), Stein's method for steady-state diffusion approximations: An introduction through the Erlang-A and Erlang-C models, *Stochastic Systems*, **6**, 301-366.

References II

- Ying (2016), On the Approximation Error of Mean-Field Models, Sigmetrics '16.
- Huang and Gurvich (2016), Beyond heavy-traffic regimes: Universal bounds and controls for the single-server queue.
- J. G. Dai and Pengyi Shi (2017), A Two-Time-Scale Approach to Time-Varying Queues in Hospital Inpatient Flow Management, Operations Research, Published Online: February 2, 2017, Page Range: 514 - 536.
- Ying (2017), Stein's Method for Mean Field Approximations in Light and Heavy Traffic Regimes, Sigmetrics '17.
- Gast (2017), Expected Values Estimated via Mean-Field Approximation are 1/N-Accurate, Sigmetrics '17.

References III

- Jiekun Feng and Pengyi Shi (2016), Steady-state Diffusion Approximations for Discrete-time Queue in Hospital Inpatient Flow Management, https://arxiv.org/abs/1612.00790.
- Anton Braverman, Stein's method for steady-state diffusion approximations, PhD Thesis, Cornell University, April, 2017. https://arxiv.org/abs/1704.08398.