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Charles Stein, 1920-2016

• An obituary by Brad Efron.
• J. R. Statist. Soc. A (2017) 180, Part 3, pp. 923-936
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A sample result

• Probability metrics
• Erlang-C model, Wasserstein metric
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Two random elements

• Given two random elements: X ∈ S and Y ∈ S,
• X the original,
• Y an approximation,

• and an appropriate function h : S → R, bound

Eh(X)− Eh(Y ).

• When S = R and h(x) = 1(−∞,b](x),

Eh(X)− Eh(Y ) = P{X ≤ b} − P{Y ≤ b}.

• When S = R and h(x) = x2,

Eh(X)− Eh(Y ) = EX2 − EY 2.
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Probability metrics

• Kolmogorov distance, when S = R,

dK(X,Y ) = sup
x∈R

∣∣P{X ≤ x} − P{Y ≤ x}
∣∣.

• Wasserstein distance,

dW (X,Y ) = sup
h∈Lip(1)

∣∣Eh(X)− Eh(Y )
∣∣,

where, for a metric space (S, d),

Lip(1) =
{
h : S → R, |h(x)− h(y)| ≤ d(x, y)

}
.

• Total variation,

dTV(X,Y ) = sup
A⊂S

∣∣∣P{X ∈ A} − P{Y ∈ A}
∣∣∣.
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Typical approximations

• Y ∼ N(0, 1); Stein (1972)
• Y ∼ Poisson(1); Chen (1975)
• Y ∼ Gamma; Luk (1994)
• binomial, geometric, . . .

• Finding your appropriate Y ; engineering solution.
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M/M/n queue (for illustration)
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Markov chain and its transitions

0 1 2 . . . n− 1 n n+ 1 . . .
λ
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• X = {X(t), t ≥ 0} is a CTMC on Z+ = {0, 1, . . . , }.
• Generator

GXf(i) = λ
(
f(i+ 1)− f(i)

)
+ min(i, n)µ

(
f(i− 1)− f(i)

)
for i ∈ Z+

• Assume
R ≡ λ/µ < n.

• Random variable X(∞) has the stationary distribution.
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M/M/1 queue: R = .95

• X(∞) is geometric: P{X(∞) = i} = (1−R)Ri, i ∈ Z+
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• Continuous random variable Y (∞) ∼ exp(.05)
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M/M/∞ queue: R = 500

• X(∞) is Poisson(500).
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• Continuous random variable Y (∞) ∼ N(500, 500)

Sample result Stein’s Method Bounds More results Engineering solution Moderate Challenges13/100



Erlang-C Model – M/M/n Queue

• Steady-state number of customers in system X(∞). Define

X̃(∞) = X(∞)−R√
R

.

• X̃(∞) lives on grid
{
x = δ(i−R), i ∈ Z+

}
, δ = 1/

√
R.

Theorem 1 (Part a, Braverman-D-Feng 2015)
For all n ≥ 1, λ > 0, µ > 0 with 1 ≤ R < n,

dW
(
X̃(∞), Y (∞)

)
≤ 157√

R
.

Y (∞) = Y (λ,µ,n)(∞)
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The continuous random variable Y (∞)

• Y (∞) has density

κ exp
( 1
µ

∫ x

0
b(y)dy

)
, (1)

where

b(x) =
{
−µx, x ≤ |ζ| ,
µζ, x ≥ |ζ|

(2)

and
ζ = R− n√

R
< 0.
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Discussions

Corollary
For all n ≥ 1, λ > 0 and µ > 0 with 1 ≤ R < n,∣∣∣EX(∞)−R−

√
REY (∞)

∣∣∣ ≤ 157.

• Not a limit theorem
• For µ = 1.

n = 5 n = 500
λ EX(∞) Error λ EX(∞) Error
3 3.35 0.10 300 300.00 6× 10−14

4 6.22 0.20 400 400.00 2× 10−6

4.9 51.47 0.28 490 516.79 0.24
4.95 101.48 0.29 495 569.15 0.28
4.99 501.49 0.29 499 970.89 0.32

• Universal
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Universal approximation

• Y (∞) depends on system parameters λ, n and µ:

Y (∞) ∼ f(y) ∼
{
N(0, 1) if y < |ζ| ,
Exponential(|ζ|) if y ≥ |ζ| .

X(∞) < n behaves like a normal, and X(∞) ≥ n behaves
like an exponential.

• Gurvich, Huang, Mandelbaum (2014), Mathematics of
Operations Research

• Glynn-Ward (2003), Queueing Systems
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Stein’s method

• Stein operator (generator, basic adjoint relationship)
• Stein equation (Poisson equation)
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Stein operator for N(0, 1)

Lemma (Stein 1972)
π(dx) = 1√

2πe
−x2/2dx is the unique distribution satisfying∫ ∞

−∞

(
f ′′(x)− xf ′(x)

)
π(dx) = 0 for all f ∈ C2

b (R). (3)

Y ∼ N(0, 1) is the unique random variable satisfying

E[f ′′(Y )− Y f ′(Y )] = 0 for all f ∈ C2
b (R).

The operator G : C2
b (R)→ C(R),

Gf(x) = f ′′(x)− xf ′(x), (4)

is known as the Stein operator.
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Stein operator via generator

π = (1/4, 1/4, 1/2) is the unique distribution on S = {1, 2, 3}
satisfying [

− 3f(1) + 2f(2) + f(3)
]
π(1)

+
[
f(1)− 2f(2) + f(3)

]
π(2)

+
[
f(1) + (0)f(2)− f(3)

]
π(3) = 0 (5)

for all f . In vector form, (5) becomes∫
S
Gf(y)π(dy) = 0 or E[Gf(Y )] = 0

where

Y ∼ π, G =

−3 2 1
1 −2 1
1 0 −1

 , f =

f(1)
f(2)
f(3)

 ∈ R3.
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Basic Adjoint Relationship

• Suppose Y = {Y (t), t ≥ 0} is a CTMC on S = {1, 2, 3}
with rate matrix

G =

−3 2 1
1 −2 1
1 0 −1

 .
• π = (π(1), π(2), π(3)) is the unique distribution that
satisfies

πG = (0, 0, 0),

which is equivalent to (5)

πG

f(1)
f(2)
f(3)

 = 0 for each f =

f(1)
f(2)
f(3)

 ∈ R3.
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Generator for Markov chains

• For the CTMC Y = {Y (t), t ≥ 0},

f(Y (t))−
∫ t

0
Gf(Y (s))ds

is a martingale for each “good” f : S → R.
• For a DTMC with transition matrix P ,

f(Y (n))−
n−1∑
k=1

(P − I)f(Y (k))

is a martingale. Thus, G = P − I is the generator for a
DTMC.

Sample result Stein’s Method Bounds More results Engineering solution Moderate Challenges22/100



Generator of diffusions

• Given b : Rn → R and σ : Rn → Rm, the diffusion process
with drift b and diffusion coefficient σ satisfies the SDE

Y (t) = Y (0) +
∫ t

0
b(Y (s))ds+

∫ t

0
σ(Y (s))dB(s).

• By Ito’s formula,

f(Y (t))−
∫ t

0
Gf(Y (s))ds

is a martingale for each “good” f : Rn → R, where

Gf(x) =
n∑
i=1

bi(x) ∂

∂xi
f(x) + 1

2

n∑
i,j=1

(σ(x)σ(x)′)ij
∂

∂xi∂xj
f(x)
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Basic Adjoint Relationship

Lemma
For a Markov process Y = {Y (t), t ≥ 0} with generator G that
has a unique stationary distribution π, the distribution π is
uniquely characterized by the Basic Adjoint Relationship∫

S
Gf(y)π(dy) = 0 for all “good” f. (6)

• Echeverria (1982): Markov processes without boundary.
• Weiss (1981): Markov processes with boundaries.
• Harrison and Williams (1987), D-Kurtz (1994),
semimartingale reflecting Brownian motions (SRBMs).

• Kang-Ramanan (2014), reflecting diffusion
• Glynn and Zeevi (2008, Kurtz Festschrift ) provides
sufficient conditions on f for (14) to hold for Markov
chains.
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Stationary distribution

• Every distribution is the stationary distribution of some
Markov process with generator G.

• G is not necessarily unique.
• Barbour (1988) made the first connection.

• In our cases, the generator for Y comes naturally ....
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Normal as a stationary distribution

• N(0, 1) is the unique stationary distribution of the
Ornstein-Uhlenbeck (OU) process. OU process is a
diffusion process

Y (t) = Y (0) +
∫ t

0
b(Y (s))ds+

∫ t

0
σ(Y (s))dB(s),

with drift b(x) = −x and diffusion coefficient σ(x) =
√

2.
The generator for the OU process is

Gf(x) = f ′′(x)− xf ′(x).

• BAR:∫ ∞
−∞

(
f ′′(x)− xf ′(x)

) 1√
2π
e−x

2/2dx = 0 for all f ∈ C2
b (R).
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Exponential as a stationary distribution

• Exp(1) is the stationary distribution of a reflected
Brownian motion (RBM) on R+. It has the generator

Gf(x) = f ′′(x)− f ′(x) for x ≥ 0, f ′(0) = 0.

• BAR: ∫ ∞
0

(
f ′′(x)− f ′(x)

)
e−xdx = 0 for all

f ∈ C2
b (R+) with f ′(0) = 0.
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Poisson as a stationary distribution

• Poisson(1) is the stationary distribution of a birth-death
process with birth rate 1 and death rate µ(x) = x in state
x. It has the generator

Gf(x) =
(
f(x+ 1)− f(x)

)
+ x

(
f(x− 1)− f(x)

)
for x ∈ Z+

• In steady-state, the number of customers in M/M/∞
system has a Poisson distribution.

• BAR: π(x) = 1
x!e
−1, x ∈ Z+, is the unique distribution

satisfying
∞∑
x=0

Gf(x)π(x) = 0 for all bounded f.
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Poisson equation (Stein equation)
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Long-run average cost of a CTMC
• Suppose Y = {Y (t), t ≥ 0} is a CTMC on S = {1, 2, 3}
with generator

G =

−3 2 1
1 −2 1
1 0 −1

 .
• Then π = (π(1), π(2), π(3)) = (1/4, 1/4, 1/2) is the
stationary distribution, and

η = E[h(Y (∞))] = h(1)1
4 + h(2)1

4 + h(3)1
2

is the long-run average cost.
• Computing η is equivalent to

finding h(1)π(1) + h(2)π(2) + h(3)π(3)
subject πG = 0, fh

π(1) + π(2) + π(3) = 1 η.
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Poisson equation for the CTMC

• (fh, η) is a solution to dual equations

−3fh(1) + 2fh(2) + fh(3) + h(1) = η

fh(1)− 2fh(2) + fh(3) + h(2) = η

fh(1) + (0)fh(2)− fh(3) + h(3) = η.

• Poisson equation (in vector form)

Gfh + h = η

1
1
1

 .
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Poisson Equation for a diffusion process

• Generator of a one-dimensional diffusion process
Y = {Y (t), t ≥ 0}

GY f(x) = 1
2σ

2(x)f ′′(x) + b(x)f ′(x)

• Given an h : R→ R, solve f = fh from the Poisson
equation

GY f(x) = h(x)− η, x ∈ R. (7)

• The constant η must be E[h(Y (∞))].
• For any random variable W

GY f(W ) = h(W )− E[h(Y (∞))].

• Key identity

E[h(W )]− E[h(Y (∞))] = E[GY f(W )]. (8)
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An outline for proving Theorem 1

• Generator coupling
• Taylor expansion
• Derivative bounds
• Moment bounds
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Generator Coupling

Setting W = X̃(∞)) = 1√
R

(X(∞)−R) in (8),

E
[
h(X̃(∞))

]
− E

[
h(Y (∞))] =E

[
GY fh(X̃(∞))

]
=E
[
GY fh(X̃(∞))

]
− E

[
GX̃fh(X̃(∞))

]
=E
[
GY fh(X̃(∞))−GX̃fh(X̃(∞))

]
.

• X̃(∞) lives on grid
{
x = δ(i−R), i ∈ Z+

}
, δ = 1/

√
R.

• The generator of birth-death process X̃ is

GX̃fh(x) = λ
(
fh
(
x+ δ

)
− fh(x)

)
+ µ(i ∧ n)

(
fh
(
x− δ

)
− fh(x)

)
.
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Taylor Expansion
• To bound

E
[
GY fh(X̃(∞))−GX̃fh(X̃(∞))

]
,

one bounds∣∣GY fh(x)−GX̃fh(x)
∣∣ for x = δ(i−R) with i ∈ Z+.

• Conduct Taylor expansion

GX̃fh(x) = f ′h(x)δ
(
λ− µ(i ∧ n)

)
+ 1

2f
′′
h (x)δ2

(
λ+ µ(i ∧ n)

)
+ higher order term

= f ′h(x)δ
(
λ− µ(i ∧ n)

)
+ 1

2f
′′
h (x)δ2(2λ)

−1
2f
′′(x)δ2

(
λ− µ(i ∧ n)

)
+ higher order term

 error.
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Approximation

• One can check that δ2λ = µ and

δ
(
λ− µ(i ∧ n)

)
= µ

(
(x+ ζ)− + ζ

)
= b(x).

• From the CTMC generator we extract

GX̃fh(x) = f ′h(x)b(x) + µf ′′h (x)

− 1
2δf

′′
h (x)b(x) + higher order terms

= GY fh(x)− 1
2δf

′′
h (x)b(x) + higher order terms.

• Typical error term

δE
∣∣f ′′h (X̃(∞))b(X̃(∞))

∣∣, |b(x)| ≤ µ |x|
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Gradient bounds

Lemma (Braverman-Dai-Feng ’16)
For all λ > 0, n ≥ 1, and µ > 0 satisfying n ≥ 1,∣∣f ′′h (x)

∣∣ , ∣∣f ′′′h (x)
∣∣ ≤ C(µ, ζ)‖h′‖,

where
ζ = R− n√

R
.

• Kusuoka and Tudor ’12.
• Standard basket of gradient bounds known: normal,
Poisson, exponential... but each new diffusion requires own
gradient bounds

• The constant C(µ, ζ) is known as the Stein factor.
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Moment bounds

Lemma (Braverman-Dai-Feng ’16)
For all λ > 0, n ≥ 1, and µ > 0 satisfying n ≥ 1,

E
[∣∣X̃(∞)

∣∣] ≤ C(µ, ζ),

where
ζ = R− n√

R
.

• Proof: Lyapunov function.
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Combining all the components

• Derive diffusion generator GY via Taylor expansion.
• Poisson equation and BAR:∣∣∣E[h(X̃(∞))

]
− E

[
h(Y (∞))]

∣∣∣
=
∣∣∣E[GY fh(X̃(∞))−GX̃fh(X̃(∞))

]∣∣∣
≤ 1

2δE
∣∣f ′′h (X̃(∞))b(X̃(∞))

∣∣+ δ2E
∣∣f ′′′h (. . .

• Apply gradient bounds and moment bounds to conclude∣∣∣E[h(X̃(∞))
]
− E

[
h(Y (∞))]

∣∣∣ ≤ δC.
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More results

• Erlang-C, Kolmogorov metric
• Erlang-A, Wasserstein metric
• M/Ph/n+M , quality- and efficiency-driven (QED) regime
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Kolmogorov Metric Version of Theorem 1

Theorem 1 (Part b)
For all n ≥ 1, λ > 0 and µ > 0 with 1 ≤ R < n,

sup
x∈R

∣∣∣P{X̃(∞) ≤ x
}
− P

{
Y (∞) ≤ x

}∣∣∣ ≤ 190√
R
.
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Erlang-A: M/M/n+M

• Re-center: X̃(∞) = 1√
R

(X(∞)−R)

Theorem 1 (Part c, Braverman, Dai, & Feng ’16)
When mean patience 1/α <∞ and R ≥ 1,

dW
(
X̃(λ,µ,n,α)(∞), Y (λ,µ,n,α)(∞)

)
≤ C(α/µ)√

R
.

• Gurvich, Huang & Mandelbaum ’14
• Glynn & Ward ’03
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A fundamental model: M/Ph/n+M

Ph

Ph

Ph

Ph

Ph

Poisson(λ)
arrival process

Rate α
abandon

• n homogeneous servers.
• Phase-type i.i.d. service times with mean 1/µ.
• Patience times i.i.d. exponential with rate α > 0.
• Offered load R = λ/µ < n.
• Admits a continuous time Markov chain (CTMC)
representation. Unique stationary distribution.
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Phase-Type (Ph) distributions
• A two-phase, hyper-exponential (H2) example:

exp(ν1)

exp(ν2)

p1

p2

• A two-phase, Coxian (C2) example:

exp(ν1) exp(ν2)

1− P12

P12

• A general d-phase distribution has inputs (p, P, ν).
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Why phase-type?

A phase-type distribution can approximate any service time
distribution (Asmussen, ’03).

Figure: Length of stay (in days) distribution of Singapore hospital,
Shi et al. ’16
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Customer count

Ph

Ph

Ph

Ph

Ph

λ

α

• Let X1(t) be the number of type 1 customers in system at
time t.

• Let X2(t) be the number of type 2 customers in system at
time t.

• Denote
X(∞) =

(
X1(∞), X2(∞)

)
.

to be the random vector having the stationary distribution.
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Main results – Wasserstein bounds
• Let β ∈ R be fixed.
• Assume Quality- and Efficiency-Driven (QED) regime, also
known as the Halfin-Whitt ’81 regime:

n = R+ β
√
R. (9)

• Set X̃(∞) = X(∞)−γR√
R

. In red/blue case, γ1 = p1/ν1
p1/ν1+p2/ν2

.

Theorem 2 (Part a, Braverman & Dai ’17)
Assume α > 0. There exists a constant C = C(α, β, p, P, ν) such
that

sup
h∈Lip(1)

∣∣∣Eh(X̃(n)(∞))− Eh(Y (∞))
∣∣∣ ≤ C√

R
, ∀n ≥ 1, (10)

where Lip(1) = {h : |h(x)− h(y)| ≤ |x− y|}.
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Main results – Wasserstein bounds
• Let β ∈ R be fixed.
• Assume Quality- and Efficiency-Driven (QED) regime, also
known as the Halfin-Whitt ’81 regime:

n = R+ β
√
R. (9)

• Set X̃(∞) = X(∞)−γR√
R

. In red/blue case, γ1 = p1/ν1
p1/ν1+p2/ν2

.

Theorem 2 (Part a, Braverman & Dai ’17)
Assume α > 0. There exists a constant C = C(α, β, p, P, ν) such
that

sup
h∈Lip(1)

∣∣∣Eh(X̃(n)(∞))− Eh(Y (∞))
∣∣∣ ≤ C√

R
, ∀n ≥ 1, (10)

where Lip(1) = {h : |h(x)− h(y)| ≤ |x− y|}.
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Higher moments

Theorem 2 (Part b, Braverman & Dai ’17)
For any m > 0, there is a constant Cm = Cm(α, β, p, P, ν), such
that if h(x) : Rd → R is continuous and satisfies

|h(x)| ≤ |x|m ,

then ∣∣∣Eh(X̃(n)(∞))− Eh(Y (∞))
∣∣∣ ≤ Cm√

R
, ∀n ≥ 1.
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Piecewise OU process

Process corresponding to Theorem 2 is multidimensional
piecewise Ornstein–Uhlenbeck (OU) process Y = {Y (t), t ≥ 0}.
• Y has stationary distribution Y (∞); Dieker & Gao ’13.
• There is an algorithm to compute the distribution of
Y (∞); Dai & He ’13
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Piecewise OU Process (cont.)
• Let Y = {Y (t) ∈ Rd, t ≥ 0} be the piece-wise OU process
satisfying

Y (t) = Y (0)− pβt−R
∫ t

0

(
Y (s)− p(e′Y (s))+

)
ds

−αp
∫ t

0
(e′Y (s))+ds+

√
ΣB(t).

• B(t) is the standard d-dimensional Brownian motion,

Σ = diag(p) +
d∑

k=1
γkνkH

k + (I − P T )diag(ν)diag(γ)(I − P ),

Hk
ii = Pki(1− Pki), Hk

ij = −PkiPkj for j 6= i.

• e′ = (1, . . . , 1) and R = (I − P ′)diag(ν).
• The drift vector

b(x) = −βp−R(x− p(e′x))− αp(e′x)+ x ∈ Rd.
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Example: an M/C2/1000 +M system
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Figure: R = 1000. “Traditional diffusion" – Dai, He, & Tezcan (’10)
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Justifying diffusion approximations

• Process-level convergence (Functional Central Limit
Theorem)

• Iglehart & Whitt ’70
• Reiman ’84

• Steady-state convergence (limit interchange)
• Gamarnik & Zeevi ’06
• Budhiraja & Lee ’09

• Steady-state convergence rates – creating a new standard
• Gurvich, Huang, & Mandelbaum ’14
• Gurvich ’14, Diffusion models and steady-state

approximations for exponentially ergodic Markovian queues,
Annals of Applied Probability.

• Braverman & Dai ’17 – Stein method framework
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Limit Interchange Justifications

• Networks of single-server
queues

• Gamarnik & Zeevi (2006)
• Budhiraja & Lee (2009)
• Zhang & Zwart (2008)
• Katsuda (2010, 2011)
• Yao & Ye (2012)
• Gurvich (MOR, 2014)

• Many-server systems
• Tezcan (2008)
• Gamarnik & Stolyar

(2012)
• D., Dieker & Gao (2014)

• No convergence rates
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High-order approximation
(Engineering solution)

• Erlang-C
• M/Ph/n

• Hospital model
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An M/M/250 System
Consider x = (i−R)/

√
R, where i = 0, 1, 2, 3, . . .

−3 −2 −1 0 1 2 3

0

0.005

0.01

0.015

0.02

0.025

0.03

n = 250, mu = 1, lambda = 200

 

 
Exact
Const. Diffusion Coeff.

Figure: P (X̃(∞) = x), P(x− 0.5 ≤ Y (∞) ≤ x+ 0.5)
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An M/M/5 System
• With only 5 servers, diffusion approximation not as good.
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Const. Diffusion Coeff.

Figure: P (X̃(∞) = x), P(x− 0.5 ≤ Y (∞) ≤ x+ 0.5)
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High Order Approximation – M/M/5
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Figure: P(x− 0.5 ≤ YH(∞) ≤ x+ 0.5)
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High Order Approximation – M/M/25
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High order results

n = 5 n = 500
λ EX(∞) Error λ EX(∞) Error
3 3.35 1.62× 10−2 300 300.00 2.86× 10−13

4 6.22 2.39× 10−2 400 400.00 1.06× 10−7

4.9 51.47 2.85× 10−2 490 516.79 2.79× 10−3

4.95 101.48 2.87× 10−2 495 569.15 3.13× 10−3

4.99 501.49 2.89× 10−2 499 970.89 3.38× 10−3
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Reminder: constant σ2(x) = 2µ

n = 5 n = 500
λ EX(∞) Error λ EX(∞) Error
3 3.35 0.10 300 300.00 6× 10−14

4 6.22 0.20 400 400.00 2× 10−6

4.9 51.47 0.28 490 516.79 0.24
4.95 101.48 0.29 495 569.15 0.28
4.99 501.49 0.29 499 970.89 0.32
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Faster convergence rates

Theorem (Braverman & Dai ’15)
There is a constant CW2 > 0 such that for all
n ≥ 1, λ > 0, µ > 0, 1 ≤ R < n,

sup
h∈W2

∣∣∣Eh(X̃(λ,µ,n)(∞))− Eh(Y (λ,µ,n)
H (∞))

∣∣∣ ≤ CW2

R
,

W2 = {h : R→ R, |h(x)− h(y)| ≤ |x− y| ,∣∣h′(x)− h′(y)
∣∣ ≤ |x− y|}.

• Key: use state dependent diffusion coefficient.
• Mandelbaum, Massey, & Reiman ’98, Glynn & Ward ’03.
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Deriving High order approximation
• Recall the Taylor expansion

GX̃fh(x) = f ′h(x)b(x) + µf ′′h (x)− 1
2δb(x)f ′′h (x)

+ higher order terms
• Recall the Taylor expansion

GX̃fh(x) = f ′h(x)δ
(
λ− µ(i ∧ n)

)
+ 1

2f
′′
h (x)δ2

(
λ+ µ(i ∧ n)

)
+ 1

6f
′′′
h (x)δ3

(
λ− µ(i ∧ n)

)
+ fourth order term

= b(x)f ′(x) +
(
µ− δb(x)/2

)
f ′′(x) + 1

6δ
3f ′′′h (x)b(x)

+ fourth order term
• Use entire second order term and bound

δE
∣∣f ′′′h (X̃(∞))b(X̃(∞))

∣∣, |b(x)| ≤ µ |x|
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High Order Approximation
• YH(∞) – corresponds to diffusion process with generator

GYH
f(x) = 1

2σ
2(x)f ′′(x) + b(x)f ′(x), f ∈ C2(R),

σ2(x) = µ+
(
µ− δb(x)

)
1
(
x ≥ −

√
R
)
≥ µ, x ∈ R.

• Previously, used σ2(x) = 2µ.

Theorem 3 (High Order Approximation, Braverman-D
2015)
∃ CW2 > 0 (explicit) such that for all n ≥ 1, 1 ≤ R < n,

sup
h∈W2

∣∣∣Eh(X̃(∞))− Eh(YH(∞))
∣∣∣ ≤ CW2

1
R
,

W2 = {h : R→ R, |h(x)− h(y)| ≤ |x− y| ,∣∣h′(x)− h′(y)
∣∣ ≤ |x− y|}.
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Example: an M/C2/20 +M system

5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

number of customers in system

p
ro

b
a
b
il
it

y

exact Markov chain

traditional diffusion

Figure: R = 16 (80% utilization).
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M/C2/20 +M : High order
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Figure: R = 16 (80% utilization). High order approximation no more
expensive to compute.
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Hospital boarding time (Dai and Shi)

Boarding patient — a patient who finishes treatment in ED and
waits to be transferred to the inpatient department (a ward)

Sample result Stein’s Method Bounds More results Engineering solution Moderate Challenges66/100



Patient overflow

Med

λ1(t)

Surg

λ2(t)

Ortho

λ3(t)

Card

λ4(t)

Onco

λ5(t)

Med Surg Ortho Card Onco
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Basic ideas of two-time-scale approach
• Daily scale analysis

• The daily arrival and discharge determine the midnight
customer count

Xk+1 = Xk +Ak −Dk, k = 0, 1, . . . ,

• Dk is binomial (min(Xk, N),µ)
• {Xk} forms a discrete time Markov chain and its stationary

distribution π can be computed exactly or approximately
• Hourly scale analysis

• The arrival rate pattern and discharge timing determine the
time-of-day customer count

X(t) = X(0) +A(0,t] −D(0,t], t ∈ [0, 1),

• Given X(0), D(0,t] is binomial
(

min(X(0), N), µH(t)
)
for

t ∈ [0, 1)
• When X(0) ∼ π, system is in a periodic steady state

(Liu-Whitt 2011)
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Generator coupling
Define

GX̃f(x) = E[f(x+ δ(A−Dn))−f(x)] for x = δ(n−N), (11)

the generator for the scaled process
X̃ = {δ(Xk −N) : k = 0, 1, . . .}: X̃k+1 = X̃k + (Ak −Dk)δ.
Basic adjoint relation (BAR): Ef(X̃k+1) = Ef(X̃k) as k →∞.

E[GX̃f(X̃∞)] = 0. (12)

From (8), we have

E[h(X̃∞)]− E[h(Y∞)] = E[GY f(X̃∞)]
= E

[
GY f(X̃∞)−GX̃f(X̃∞)

]
.

• X̃∞ = δ(X∞ −N) is the scaled customer count
• Y∞ has the stationary distribution of a diffusion
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Taylor expansion

For x = δ(n−N),

GX̃f(x) = E[f(x+ δ(A−Dn))− f(x)]

= f ′(x)δE(A−Dn) + 1
2f
′′(x)δ2E[(A−Dn)2]

+ 1
6δ

3E[f ′′′(ξ)(A−Dn)3]

= GY f(x) + 1
6δ

3E[f ′′′(ξ)(A−Dn)3],

where

δE(A−Dn) = b(x) = δ(Λ−Nµ) + µx−,

δ2E[(A−Dn)2] = σ2(x).

When µ = C1/N , derivative and moment bounds: ||f ′′′|| ≤ C2/µ,
E[(A−Dn)3] ≤ C3.
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Average number of boarding patients
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High order approximation: state-dependent σ2(x) (N = 18,
Dai-Shi 2016)
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Average number of boarding patients
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Moderate Deviations
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Cramér type moderate deviations
Assume X1, X2, . . . i.i.d. with E(X1) = 0, EX2

1 = 1 and
E exp(t0 |X1|) <∞ for some t0 > 0. Set Wn =

∑n
i=1Xi/

√
n.

• Central limit theorem:

Wn ⇒ Z ∼ N(0, 1).

• Berry-Esseen bounds

sup
x∈R
|P{Wn ≥ x} − P{Z ≥ x}| ≤ 0.33554(E |X1|3 + 0.415)√

n
.

• Moderate deviations

P{Wn ≥ z}
P{Z ≥ z}

= 1 +O(1)(1 + z3)E |X1|3√
n

for 0 ≤ z ≤ n1/6/(E |X1|3)1/3.
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Moderate Deviations for Erlang-C
Assume that

n = R+ β
√
R.

Theorem 4 (Braverman, Dai, and Fang ’17)
Fix a β > 0. There exists a constant C = C(β) such that∣∣∣∣∣P{X̃(∞) ≥ z}

P{Y (∞) ≥ z} − 1
∣∣∣∣∣ ≤ C√

R
(1 + z) (13)

for 0 ≤ z ≤
√
R.

∣∣∣∣ P(X̃(∞) ≥ z)
P(ỸH(∞) ≥ z)

− 1
∣∣∣∣ ≤ C(β)√

R
+ C(β) min

{ 1
R

(z ∨ 1), 1
}
.
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Moderate deviations
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Figure: n = 100, ρ = 0.9. The plot above shows the relative error of
approximating P(X̃(∞) ≥ z). The x-axis displays the value of z;
when z = 8, P(X(∞) ≥ z) ≈ 10−4. The blue dots correspond to∣∣∣P(X̃(∞)≥z)
P(Y (∞)≥z) − 1

∣∣∣. The green circles correspond to
∣∣∣ P(X(∞)≥z)
P(YH (∞)≥z) − 1

∣∣∣.
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Large deviations or moderate deviations?

• 5% of patients have to wait six hours or longer to get a bed
• 4% passengers cannot get a Uber car in 10 minutes
• packet loss rate 10−6 – large deviations
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Proof outline: basic adjoint relationship

• W = X̃(∞) lives on grid
{
x = δ(i−R), i ∈ Z+

}
,

δ = 1/
√
R.

• The generator of birth-death process X̃ is

GX̃f(x) = λ
(
f
(
x+ δ

)
− f(x)

)
+ µ(i ∧ n)

(
f
(
x− δ

)
− f(x)

)
= λ

(
f
(
x+ δ

)
− f(x)

)
+ (λ− b(x)/δ)

(
f
(
x− δ

)
− f(x)

)
Basic adjoint relationship:

E
[
λ
(
f(W + δ)− f(W )

)
+
(
λ− b(W )

δ

)
(f(W − δ)− f(W ))

]
= 0

for each “good” f .
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BAR: an alternative form

Using f(b)− f(a) =
∫ b
a f
′(s)ds and f ′(b)− f ′(a) =

∫ b
a f
′′(s)ds,

E[−b(W )f ′(W )] = E
[ ∫ δ

0
f ′′(W + t)λ(δ − t)dt

+
∫ 0

−δ
f ′′(W + t)

(
λ− b(W )

δ

)
(t+ δ)dt

]
= E

[∫
|t|≤δ

f ′′(W + t)K(W, t)dt
]
. (14)

Fact: ∫
|t|≤δ

K(W, t)dt = µ− δb(W ).
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Challenges and opportunities

• Multi-dimensional diffusion processes; gradient estimates
are difficult

• Mean-field models; (Ying 2016, 2017), Nicolas Gast (2017)
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Multi-dimensional Gradient Bounds

Lemma (Gurvich (2015))
Suppose |h(x)| ≤ |x|2m for some m > 0, then the solution to
Poisson equation satisfies

|f(x)| ≤ Cm(1 + |x|2)m,

|Df(x)| ≤ Cm(1 + |x|2)m(1 + |x|),

∣∣∣D2f(x)
∣∣∣ ≤ Cm(1 + |x|2)m(1 + |x|)2,

sup
|y−x|<1,y 6=x

∣∣D2f(x)−D2f(y)
∣∣

|x− y|
≤ Cm(1 + |x|2)m(1 + |x|)3.
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Gradient Bounds for Elliptic PDEs

• Based on Gurvich (2015).
• Consider the elliptic differential operator

Lf(x) =
∑

1≤i,j≤d
aijDijf(x) +

∑
1≤i≤d

bi(x)Dif(x).

• The matrix A defined by Aij = aij is positive definite.
• b(x) = (b1(x), ..., bd(x)) satisfies the Lipschitz condition

|b(x)− b(y)| ≤ cb |x− y| .
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Schauder Interior Estimates

• For x ∈ Rd, let Bx = {y ∈ Rd : |y − x| ≤ 1
1+|x|}.

Lemma (Gilbarg & Trudinger (2001))
Let f(x) be a solution to the PDE

Lf(x) = h(x).

There exists a constant C depending only on A and cb, such
that

|Df(x)|+
∣∣∣D2f(x)

∣∣∣+ sup
y,z∈Bx,y 6=z

∣∣D2f(z)−D2f(y)
∣∣

|z − y|

≤ C
(

sup
y∈Bx

|f(y)|+ sup
y∈Bx

|h(y)|+ sup
y,z∈Bx,y 6=z

|h(z)− h(y)|
|z − y|

)
(1 + |x|)3.
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Lyapunov Functions

• If the elliptic operator L is the generator of some diffusion
process Y = {Y (t), t ≥ 0}, then the solution to

GY f(x) = h(x)− Eh(Y (∞)) =: h̃(x)

satisfies

fh(x) =
∫ ∞

0
Exh̃(Y (t))dt.

• Suppose we know that

|Exh(Y (t))− Eh(Y (∞))| ≤ V (x)e−ηt, η > 0.

• Then

|f(x)| ≤
∫ ∞

0

∣∣∣Exh̃(Y (t))
∣∣∣ dt ≤ CV (x).
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Networks of single-server queues and an
open problem
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A G/G/1 Queue

Consider a single-server queue operating under
first-come-first-serve discipline.
• A,A1, A2, ... i.i.d. inter-arrival times with mean 1/λ = 1.
• S, S1, S2, ... i.i.d. service times with mean m.
• Traffic intensity ρ = λm = m.

Lindley recursion for waiting times:
• Recursive formula for Wn – the nth customer’s waiting
time in queue:

Wn+1 = (Wn + Sn −An+1)+, x+ := max(x, 0).

• An, Sn – inter-arrival and service time of nth customer,
respectively.
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Steady-State Behavior in Heavy Traffic

• Steady-state customer waiting time W (∞).
• As ρ = m ↑ 1, W (∞)→∞.
• The scaled version W̃ = (1− ρ)W (∞) does not blow up.
•

W̃ ∗
d= (W̃ + (1− ρ)X)+,

where

W̃ ∗
d= W̃ , X ⊥ W̃ , X

d= S −A, EX = m− 1
λ

= ρ− 1.

• Define

G
W̃
f(w) := E

[
f
(
(w + (1− ρ)X)+)]− f(w), w ≥ 0.
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Basic Adjoint Relationship (BAR)
For all ’nice’ functions f , we have BAR

E
[
G
W̃
f(W̃ )

]
= E

[
f
(
(W̃ + (1− ρ)X)+

)
− f(W̃ )

]
= 0,

where W̃ and X are independent.
• Suppose f ∈ C3(R), use Taylor expansion:

E
[
f
(
(W̃ + (1− ρ)X)+

)
− f(W̃ )

]
=E
[
f
(
W̃ + (1− ρ)X

)
− f(W̃ ) +

(
f(0)− f(W̃ + (1− ρ)X)

)
1{W̃+(1−ρ)X≤0}

]
=E
[
f ′(W̃ )(1− ρ)EX + 1

2f
′′(W̃ )(1− ρ)2EX2 − f ′(0)(1− ρ)EX

]
+ E

[1
6(1− ρ)3f ′′′(ξ)EX3 − 1

2(W̃ + (1− ρ)X)2f ′′(η)1{W̃+(1−ρ)X≤0}

]
,

where we have used

E
[
(W̃ + (1− ρ)X)1{W̃+(1−ρ)X≤0}

]
= (1− ρ)EX.

Sample result Stein’s Method Bounds More results Engineering solution Moderate Challenges88/100



Poisson Equation and Gradient Bounds

• Consider Poisson equation

GZfh(w) := 1
2σ

2f ′′h (w)− θf ′h(w) + θf ′h(0) = h(w)− Eh(Z),

where

σ2 = (1− ρ)2EX2, θ = −(1− ρ)EX > 0

and Z is an exponential random variable with mean σ2/2θ.
• A solution satisfying f ′h(0) = 0 also satisfies

‖f ′′h‖ ≤
‖h′‖
θ

and ‖f ′′′h ‖ ≤
4
σ2 ‖h

′‖.
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G/G/1 Waiting Time Approximation
Using Stein equation

Eh(W̃ )− Eh(Z) = E
[
GZfh(W̃ )

]
− E

[
GW fh(W̃ )

]
= (1− ρ)3E

[1
6f
′′′(ξ)

]
EX3

− E
[1
2(W̃ + (1− ρ)X)2f ′′(η)1{W̃+(1−ρ)X≤0}

]
,

we obtain:
Lemma
Assume EX3 <∞. Then,

dW
(
W̃ , Z

)
≤ C

√
(1− ρ).

Furthermore, if EXm <∞ for all m ≥ 1, then for any ε > 0,
there exists a constant Cε such that

dW
(
W̃ , Z

)
≤ Cε(1− ρ)1−ε.Sample result Stein’s Method Bounds More results Engineering solution Moderate Challenges90/100



Multidimensional SRBMs
Consider the M/M/1→ ·/M/1 tandem system, we are
interested in the queue lengths.

• Assume λ = 1. Heavy traffic: µi = µ
(n)
i and

λ− µ(n)
i = −βi/

√
n < 0.

• The approximating diffusion process is a two-dimensional
semimartingale reflecting Brownian motion (SRBM)

Z = {(Z1(t), Z2(t)) ∈ R2
+, t ≥ 0}.

• See Williams (1995) for a review of SRBMs.
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PDE in an orthant with oblique
boundary derivatives

Open Problem
Consider the operator

Anf(x) = 1
2

2∑
i,j=1

Σij
∂2f(x)
∂xi∂xj

+
2∑
i=1

νi
∂f(x)
∂xi

+
2∑
i=1

βi〈R(i),∇f(x)|xi=0〉,

where

ν = 1
n

(
−β1

β1 − β2

)
, Σ = 1

n

(
2 −1
−1 2

)
, R = 1

n

(
1 0
−1 1

)

and R(i) is the ith column of R. If h : R2
+ → R is a Lipschitz-1

function, under what conditions on 〈R(i),∇f(x)|xi=0〉, does
the solution to the PDE

Anfh(x) = h(x)− Eh(Zn(∞))

satisfy

‖D2fh‖ ≤ C1n and ‖D3fh‖ ≤ C2n.
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Fluid approximation: M/M/n

• {X(t), t ≥ 0} is a CTMC on {0, 1, 2, . . .}.
• Setting ε1 = λ(f ′(η1)− f(i)) and ε2 = (i∧ n)(f ′(i)− f(η2)),

GXf(i) = λ(f(i+ 1)− f(i)) + i ∧ n(f(i− 1)− f(i))
= λf ′(i) + λ(f ′(η1)− f ′(i))− (i ∧ n)f ′(i)

+ (i ∧ n)(f ′(i)− f ′(η2))
= (λ− i ∧ n)f ′(i) + ε1(i) + ε2(i).

• Let h(i) = −i+ λ. Solving Poisson equation

(λ− i ∧ n)f ′(i) = h(i),

then, Eh(X(∞)) = E
[
(λ−X(∞) ∧ n)f ′(X(∞))

]
.
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Basic adjoint relationship

• Recall GXf(i) = (λ− i ∧ n)f ′(i) + ε1(i) + ε2(i).
• BAR: E[GXf(X(∞))] = 0.
• Thus,

E(X(∞))− λ = −Eh(X(∞))

= −E
[
(λ−X(∞) ∧ n)f ′(X(∞))

]
= Eε1(X(∞)) + Eε2(X(∞)),

where

ε1 = λ(f ′(η1)− f(i)),
ε2 = (i ∧ n)(f ′(i)− f(η2)).

Sample result Stein’s Method Bounds More results Engineering solution Moderate Challenges94/100



Gradient estimates: M/M/n

• Recall that

f ′(i) = i− λ
i ∧ n− λ

=
{
−1 if i < n,
i−λ
n−λ if i ≥ n.

• f ′(i) increases in i, thus ε1(i) ≥ 0 and ε2(i) ≥ 0.
• ε1(i) = ε2(i) = 0 for i < n.
• ε1(i) ≤ 1

n−λ for i ≥ n and ε2(i) ≤ 1
n−λ for i ≥ n.

• Thus,

0 ≤ Eε1(X(∞)) + Eε2(X(∞)) ≤ (λ+ n) 1
n− λ

P{X(∞) ≥ n}.

0 ≤ E(X(∞))− λ ≤
(
λ+ n

n− λ

)
P{X(∞) ≥ n}.
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Variance: M/M/n

Ying (2017): Assume µ = 1. For ρ = λ/n < 1.

E
(
X(∞)− λ

n

)2
≤ 61 + ρ

n
+ 36
n2

1 + ρ

(1− ρ)2 ,
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Figure 3: Comparison of the steady state distribution for di↵erent values of n and c
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