Routing, Scheduling, and
Networking In Data Centers

R. Srikant and Weina Wang
University of lllinois at Urbana-Champaign

Data Centers

Large-scale data processing

APACHE

oark’

Cloud computing <

gerl!)‘l sgrﬁigegw Ec 2

Data analytics

Google Analytics

RIS

IR EEEr
Lavmawe

x
D)
N
N

DDED IN SPOATS EQUIPMENT COULD PROVIDE REAL-TIME

’I o W
WIKIPEDIA
The Eree Encyclopedsa

Main page

Search engines

gle > Bing

Webpages

Armcio Task Road View source Vies

Japan

From Wikipodia, tha frea encyclapada

This article is abouf the country. For other uses, see Jspan (desmbiguation).
"WNippon® redirects here. For other uses, see Nigpon (disambiguation).
Japan (Japanese: E1# Mippon [ngpdn] or Nivon [nihge]; formally B 0
&) Nippan-ka#u or Nihon-koku, meaning “State of Japan®) s a sovereign
Island naion in East Asia. Located in the Pacfic Ocean, it lies off the eastern
coast of the Asian mainland, and stretches from the Sea of Okhotsk in the
nerth %o the East China Sea and Taiwan in the southwest.
The kanji that make up Japan's name mean "sun ofigin®. B can be read as w
and means sun, while % can be read as hon, or pon and means ongin. Japan
is often referred o by the famous epithet *Land of the Rising Sun® in reference
0 its Japanese name.

Cloud storage
& Dropbox

Tutorial

- Resource Allocation Problems in Data Centers and Cloud Computing
. Recent results and open problems

- Mean-Field Approximation
. A very brief and high-level introduction

. Heavy-Traffic Approximation
. A very brief and high-level introduction

Outline of Part |

- Load Balancing

- Load-balancing in large data-storage systems
. Scheduling with Data Locality

. Job vs Task Scheduling

- Minimizing data transfer delay Iin data center networks

Load Balancing

- Which gueue to join?

2T <~
~

~ —
-~ o
—
—
—
—
-
” ~~
- —
- ~ e
- —y
- ~ —
- —
- —
- ~
- ~§
- —
” -~
- e .
—
—
-~ o
—_—

f’
f’
-

| %
) o) (o e

Load Balancing

. Join-the-Shortest Queue (Overhead?)

. Power-of-two choices: sample two at random, join the
shortest of the two

2T <~
-
~

~ Vo
-y
—y
—y
—y
—y
—y
—y
—y
—y
~ oy
~ ~ oy
\ L
—y
—y
[
—y
—y
—y
—y
[
—y
—y
—y
—y
~ oy
—y

f’
f’
-

f”
-

o 2 £ &8 - &0

Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling

- Minimizing data transfer delay Iin data center networks

Reliability and Load Balancing

. Servers which store files fall occasionally
. Each file is stored in multiple servers to protect against such failures

. This provides a load balancing opportunity
. Which server or servers should we fetch a file from?

- How do different schemes to improve reliability help in terms of load-
balancing?

- Well studied problem, one point of view here

Replication

Server 1 Server 2 Server 3 Server 4

Replication
. (2,1) code

Server 1 Server 2 Server 3 Server 4

Coding: Reduce Storage, Maintain Reliability

. (3,2) code

LotR: A+B

-y

Server 1 Server 2 Server 3

Coding: Improve Reliability, Maintain Storage

. (4,2) code

LotR: A+B otR: A+2B

Server 1 Server 2 Server 3 Server 4

Focus on Load Balancing

. For the rest of this part, we will not model server failures

. These will be assumed to occur at a slower timescale than the rate at
which files are accessed from the servers

. We will focus on how to exploit redundancy In file storage (through
replication or coding) to improve the speed with which we can fetch a
file from the servers

. Using load balancing

Replication and Load Balancing: (2,1) Code
File requests

o
—

Server 1 Server 2 Server 3 Server 4

Coding and Load Balancing: (4,2) Code

File requests

Need chunks from @

two servers, but each
chunk is half the size
of the original photo

LotR: A+B otR: A+2B

Server 1 erver 2 Server 3 Server 4

In this talk....

- (Nn,1) code (replication):
- Each file is replicated at n different servers
- The size of the each copy of the file Is 1

. (nk,k) code

- Each file Is encoded into nk chunks and stored in nk different servers
- The size of each chunkis 1/k

- Any k out of the nk chunks are sufficient to recover the entire file

. Total storage space Is the same as above

Delay comparison: (n,1) vs. (nk,k) code

. Question: Does the delay improve with coding In the large-system
limit (large number of servers, files, arrival rates)?

- “Result” (LI, Ramamoorthy, S., 2016): Under a Poisson

arrival/exponential service-time model, the delay decreases by a

factor of at least p N
H (k)

k

o J

where H(k) is the k" harmonic number:
1 1 1
1+-4+-4-4 -
2 3 Kk

Very light traffic (zero queues): (2,1) vs. (4,2) code

. File service time Is exponentially distributed
. Mean file access delay under (2,1) code (replication):

w1l = E[X] (X~Exp(1))
=1
- Mean file access delay under (4,2) code:

W®*2) = E[max{Y;,Y,}] (Y; and Y, are i.i.d. with Exp(2))

3
4

Compared with replication, delay improves by 25% under coding

Very light traffic (zero queues): (n,1) vs. (nk,k) code

. Mean file access delay under (n,1) code (replication):
Wb = E[X] (X~Exp(1))
=1
- Mean file access delay under (nk,k) code:

wnkk) — E rlnzax Y: (Y;, Vi, are 1.1.d. with Exp(k))
i

H()
K

General Traffic Case: (n,1) vs. (nk,K) code

. Question: What happens for general arrival rates?

. Answer: In the many-servers limit,
. In the heavy-traffic regime

w k) H (k)
' — <
I;H? wmny — g

- Conjecture: In the many-servers limit, for all feasible arrival rates,

W Hk)
WD =k

Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling

- Minimizing data transfer delay Iin data center networks

L oad-Balancing and Communication

. Each server stores certain data

‘— ..
- ~ o
-
- S
- ~

. Each task is associated with a data chunk ~ Task<€>{pata|

~ . "
L -

- -

- -
- -

. |f a task Is routed to a server with the required data chunk, then it
executes quickly; otherwise, it has to fetch the data from another server,

thus leading to longer processing times

Servers E/ Eﬁ E/ ,%ﬁ E/ ,%ﬁ E/ ,Eﬁ
A B C] D

A

L oad-Balancing and Communication

-
.....
- ~
- o
e” ~

. Each task is associated with a data chunk « [Task<€>{paa

Large queueing e
delay

Longer
processing time -

Tasks

Servers fms

H B B
d
1 7 1
])])
/] [} /])
] 1] |}
!) ’ 1
1 \} 1)

Local server
for task B

Modeling Data Locality

. For the rest of this part, we will not model the dynamics in the network
- We abstract the network away and assume that

local processing rate > remote processing rate

. We will focus on how to strike the right balance between load-balancing
and communication to maximize throughput and minimize delay

Task Types

. Task type: servers that store its input data (local servers)

Task(—)[A]

Type = (1, 2, 4)

Arrival rates A@a,2,3) A1,2,4) AN125 ... Aij K

senvers E/s-ﬁ E/saﬁ (o] =] sui-‘j

4 Y \

- &

4 Y ‘\
\ AN J
4 Y \
\ AN J

- A J

Viax WElghted BaCklOg [Tassiulas and Ephremides 1993]

. hen server 2 becomes avallable:
+ Throughput O@gﬂ?ﬁ\é@fﬁequeue with the maximum weight

. Too many queues: O(M3) M ~ Tens of thousands
Weidtot dédayldptimal; [Stolyar 2004, Mandelbaum and Stolyar 2004]
Viewed by Server 2 GQ[(l,Z,B) 0 2,3,4) VY\UB45 ...)/%(l,j, K)
Q23 Qe34 Q@45 ... Qdjk

Per task
type queue

a-=>y

PUEyaArs

Service rates a a
2

Servers E/ % .
- - oyl

b (e =

Achieving Delay Optimality under Data Locality

[Wang et al. 2013] %ha S{ Tiwse = (1, 2, 4)
~ -~ N3
Step 1: Join the Shortest Queue

IrIUC 7!. Ul LIIC II'\NJCI UI IC'JI S

N

Local Remote
gueues Ql\/|+1 ~ queue

hES .’
...

Welights: O(Q ;
Step 2. : ! YQM ;

MaxWeight Tasks from
overloaded servers

Servers (185 (el (el E/saﬁ ﬂﬁ

>

Performance

. Maximizes Throughput

.- Delay optimality in the following heavy-traffic regime

--

--
--

Overloaded No data storage

Peak hours of data centers

Delay Optimality

. Total backlog (based on Eryilmaz, S. 2012) Stability region

£/
Arrival rate
vector

M+1

2 2
: (€) _O' + VvV 1
$ 0] -2 o1
m=1

. Coincides with the lower bound where all the servers are pooled
together and running on full speed

. Asymptotically minimizes the total backlog
. By Little’s law, it asymptotically minimizes the average task delay

Delay Optimality for All Heavy-Traffic Regime
[Xie and Lu 2015]

Task Type = (1, 2, 4)

Join the Shortest Queue Again heavy-traffic

optimal in the sense of
Eryilmaz, S. (2012)

-

Servers E/gﬁ E/gﬁ E/Qﬁ E/gﬁ

Prioritized scheduling - Local tasks first
- No local tasks: serve the longest queue

Open Problem

. In our discussion, we considered problems where each job consists
of a single task

. Instead, suppose each job consists of multiple tasks, and a job Is
completed only when all the tasks in the job are completed

. Further each task can be allocated to a different server If needed
. Scheduling algorithms which minimize job delays are unknown

. But near-optimality can be achieved when there is no data locality

Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling (with no data locality)

- Minimizing data transfer delay Iin data center networks

Jobs with Multiple Tasks

. Matrix-vector multiplication: Mx
. Basic operation for PageRank, regression analysis, ...

task |— task

Single-Server System

Job 2 arrives

-
o | B
o @& Ef;?ty

0 1 Average latency is smaller Time

Jime

Job2 Jobl

. Fewest-Unassigned-Tasks (FUT) first?
- Analogy to Shortest-Remaining-Processing-Time (SRPT) policy
- Not sample-path optimal for jobs with multiple tasks

Near Delay Optimality of FUT

Job 2 arrives
latency

FUT:
oldin Time

[
[@l
D time
D D Near delay optimality:

Average holding time of FUT < Average latency of any policy
Job 2 Job 1 [Sun, Koksal, Shroff 2017]

- Holding time of a Jjob: amount of time a job spends In the queue
. Single server system: latency — holding time = service time of one task

- More generally: latency — holding time < Constant

INntultion

System A FUT System B Another policy

)
- @l

Job1l Job3 Job?2 Job1l Job3 Job?2

. Average holding time of FUT = average latency of System A
. Tasks leave System A from the job with the fewest remaining tasks
- For any [0, t], task departures: System A =2 System B

Open Problem

. Back to the matrix multiplication example

- The job consists of not only many tasks, but the tasks have to be
executed in multiple stages, I.e., there are precedence constraints

.- Delay-optimal or near-optimal scheduling policies for multi-stage,
multi-task jobs are unknown

. Data locality and multiple stages???

Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling

. Minimizing data transfer delay Iin data center networks

Data Transfer Flows

. How to allocate bandwidth to flows to minimize file transfer delay?
. Links have bandwidth capacities, shared by flows

Share bandwidth 7

Servers E/ nﬁ

Resource Allocation

. Xx,. rate allocated to a flow on route r
. n,.. # of flows on route r

. (;: capacity of link

. Constraints:

Enrxr < CZ,VI

1=

. Goal: how should we choose {x,} to minimize data transfer delay?

File Transfer Delay

. |f a flow on route r arrives at time A, and has file size E., then its
delay D, Is determined by the equation:

Ar+D,
f x,.(t)dt = F. (1)

Ay

. F.: random variable
. The choice of {x,.} affects the delay D,. through (1)

A Performance Criterion

. Suppose there are N servers in the system
. # of source-destination pairs is O(N?)

. # of links in a data center network is L << N?4
. Example: N*~10%, L~10%* in a tree structured data center network

. Goal: E[# of flows] ~ O(L) instead of O(N?)

Proportional Fairness

. Choose {x..} to maximize

z n, log x,.

T

. log x,.. utility of a flow on route r when allocated a rate of x,

. Subject to resource constraints on each link

Results

. Asymptotically tight bounds on total backlog (Kang et al, 2009)

L 1
L #flows| =40 (—)

€ €

Capacity region

Arrival rate

. L: number of saturated links Iin heavy traffic vector

. Insensitivity: the bounds hold for a general class of phase-type
distributions for data sizes (Vlasiou et al, 2014)

. This distribution class can approximate any data size distribution
arbitrarily closely

Open Problem

. The file transfers may occur to achieve some other load-balancing
goal

- Such as to fetch remote data at a server In the data locality problem

. Joint resource allocation for data-transfer and load balancing in the
presence of data locality to achieve optimal or near-optimal job/task
delays Is an open problem

Open Problems

. Coding/Replication/Load Balancing Tradeoffs

. Analyzing/minimizing job delay

. Scheduling jobs with multiple stages
Dependence among tasks puts constraints on scheduling decisions

Job

Task

Task

Task

—_>

Task

Task

Task

. Joint design of task scheduling and data transfer

Rest of the Tutorial

. Difficult to analyze most resource allocation schemes exactly
. There are some exceptions

. Two asymptotic regimes
- The number of servers is very large (mean-field limit)
. The traffic load approaches the capacity of the system (heavy-traffic)

- The first regime Is perhaps more realistic for data centers

- The second regime often provides insight into why certain policies
behave better than others (even in light to moderate traffic)

Tutorial on Mean-Field
Analysis

R. Srikant and Weina Wang
University of lllinois at Urbana-Champaign

Load Balancing

. Join-the-Shortest-Queue Arrival process is Poisson(NA)

- Random Routing Service times are exp(1)
- Power-of-d-Choices
. Batch-filling
- Redundancy-d
Join-the IdIZ Queue l N (A <)
&< (u=1)
T ’A/, ‘IV \\\.\ ~~~~~~~~ S

Random Routing

- Route an arrival to a queue uniformly at random
. N separate M/M/1 queues with load 4
- Queue length:

Pr(Q =i) =X Can we do better?
l NA (A <1)
(u=1)

Join-the-Shortest-Queue

- Each arrival joins the shortest queue among all the N queues
- Minimizes average delay
- Requires information about all gueues: large overhead

-
f’

| I I |
] STV] STV] STV] ATTITTE] ATTITTE

Power-of-d-Choices

. Each arrival picks d queues at random and joins the shortest one

- Queue length:

dl-1
lim Pr(Q = i) = Ada-1 doubly exponential
n—>00
Example: d = 2 l NA (A <1)
v (u=1)
7"/ N ;\\
] v

I&‘ l@’ l&l

u$= u&:

Equivalent model: Simple Load-Balancing for Data Locality

. Each data chunk is in 2 servers: (N) places where a data chunk can be

2
- Arrival checks the servers that have its data and joins the shortest one

- Equivalent to the Power-of-2-Choices

lm (2 < 1)
4 (u=1)
L’,/ \\\A

[

State Representation

« Queue length vector: Q = (Q4,0,,05,0,) = (1,2,0,0)
- Equivalent representation:

s;(t): fraction of queues with at least i tasks at time t

3 s3 =0
2 s, =1/4
0 so=4/4=1

Dynamics

. s;(t): fraction of queues with at least i tasks at time t

- When does s; change?
. s; does not change when a task arrives to queue with < i — 1 tasks or > i tasks
. s; = s;+1/N when a task arrives to a queue with i — 1 tasks

. s; does not change when a task departures from queue with < i tasks or > i + 1 tasks
. s; —» s; —1/N when a tasks departs from a queue with i tasks

SZ :1/4

O Frr N W

Q1 Q2 Qs Q4

Power-of-2-Choices: Arrivals

. s;(t+6)=s;+1/N when atask arrives to a queue with i — 1 tasks
- Happens when an arrival chooses two queues where the shorter one has

i — 1 tasks
Probability » NA§(s7; — s7)

lm (2 < 1)
v (u=1)
L’,/ \\\A

Ql _ o =

s7 .. both queues > i — 1

s7: both queues > i

Power-of-2-Choices: Departures

. s;(t+6) =s; —1/N when a tasks departs from a queue with i tasks
. # queue with i tasks = N(s; — s;41)

. Probability = N(s; — s;41)0

Mean-Field Analysis

. Drift: arrival departure
sE+8)—s®]] 11 oo 17
E S S|=75 NNA(?(SL 1 — Si) — —N(Sl S;i+1)0

= /1(51'—1 - 512) — (S; — Siv1)

as n — oo (not proved here)
- Mean field approximation:

ds;
— (Sl 17) — (i — Si+1)

- Use the fixed point of this set of differential equations as an approximation
for the original system

Solving for the Fixed Point
ds; 5 5
Fr A(Si—l — 5) — (i — Si+1)

. Fixed point: A(sEy —s?) = (s; — si31)
. Sufficient condition

As? =s;01,i =1,2, ...
. Solution: S; = Azi‘l,i =1,2,..

- Queue length probability decreases double exponentially

- Uniqueness (not proved here)

Steps Involved in the MFA

- Change the state description in terms of fractions of queues with at least a
certain queue length

- Compute

glir(l)E (Si(t + 6; — Si(t) |Si(t) _ Si)

- Use the above as an approximation to s;

. Study the differential equations

Power-of-d-Choices

Arrival: s;(t + 6) = s; + 1/N when a task arrives to a queue with i — 1 tasks
Probability ~ NA§(si; — sf)
Departure: same as power-of-2-choices

. arrival departure
Drift: N A
s;(t+8)—s;(t) 1/17 N 17 N
E [l 5 : S] = (N NAS(Sid_l — Sl-d) - NN(SL- — si+1)6>

= A(Sid—l - Sid) — (s; — Siz1)

l as n — oo (need to prove)

Mean field analysis
dSi

ar A(Sid_l — Sid) — (si = Si41)

Power-of-d-Choices: Fixed Point

dSi

dt = /1(551—1 — Szd) — (S; — Si+1)

. Fixed point: A(sf; —sf) — (s; — si41) =0

. Sufficient condition
/lsl-‘i =s;.,1=1,2,..

dl—1

. Solution: s;=Ad-1,i=1,2, ..

Batch-Filling

Batch arrivals: each batch has m tasks batch {

—— task

Poisson batch arrivals with rate NA/m
- Total task arrival rate is still NA

Each batch arrival checks md gueues

. d: probe ratio

Batch-Filling

Waterfilling:

Fill the smallest queue until it equals the second smallest queue

- Then fill these until they become equal to the third smallest queue, and so on...

Example: m=4,d =1.5

] AT

] S

] AT

<€

NA (1<1)

(u=1)

] AT

3 <A

] AT

] AT

] AT

Batch-Filling

- Queue length:

lim Pr(Q = i) =

\
where

Q)
|

. Finite queue length

1-21

(1=DAd(1 + Ad)i L
1—(1=2d(1+ Ad)? 1

0

& (1)
8\T—21

log(1 + Ad)

i =0,
1<i<0-1,
i =0,

otherwise,

Redundancy-d

- Each arrival makes copies at d servers chosen at random
- The other copies are killed once one copy is completed
- Harder to analyze

Example: d = 2 l N1 (A<1)
(u=1)
L~ - \\é\\

Join-the-ldle-Queue

- An arrival is routed to one of the idle servers at random if there is any; if not,
the arrival is routed to a server at random

- Queue length:
lim Pr(Q = i) =0, [=2

n—00
l NA (<)
) (=1
No Idle queues .-" ' Idle queues

1

1

P 1
ya A\

Incomplete List of References

- PoD: Vvedenskaya, Dobrushin, Karpelevich (1996), Mitzenmacher (1996)
- Batch: Ying, S., Kang (2015, 2017)

- JIQ: Lu et al (2011), Stolyar (2015,...)

- Redundancy: Gardner et al (2015,...)

- Many other scaling regimes: Borst SIGMETRICS 2017 Talk

Heavy-Traffic Analysis for
Discrete-Time Systems

R. Srikant and Weina Wang
University of lllinois at Urbana-Champaign

Outline

- Kingman Bound for a Single Queue
. Join-the-Shortest-Queue (JSQ) Routing Policy (Eryilmaz, S., 2012)

- JSQ-MaxWeight for Scheduling with Data Locality (Wang et al, 2013)

Kingman Bound for a Single Queue

Single Queue 2

mo--

e qlk+1)=q(k)+a(k)—s(k)+u(k)
- a(k): # arrivals
. s(k): # potential departures
- u(k): unused service

. Want to bound E|q(k)] in steady state

. Set the drift of Lyapunov function V(g) = g* to zero:
E[q*(k + D] — E[q°(k)] =0

. Drift equation:
q“(k +1) — q*(k)
= 2q(k)(alk) — s(k)) + (alk) — s(k))"
+2u(k)(q(k) + alk) — s(k) + u(k)) — u?(k)

Drift Equation p

o~

q*(k +1) — q* (k) q(k + 1) = q(k) + a(k) — s(k) + u(k)
=[2q(k) (a(k) B S(k))}l{(a(k) _ S(k))z} In each time slot k,
+2u(k) (q(k) +a(k) —s(k) + u(k)) —u?(k) a(k): # arrivals
s(k): # potential departures
u(k): unused service

| E[q(0)(atk) — s(k))] = (A — wE[q(k)]

: {IE |(atk) — s(k))*| > 0% as A > J

Drift Equation (cont’d) p

o~

q*(k +1) — q* (k) gk + 1) = q(k) + a(k) — s(k) + u(k)
2
- Zq(k)(a(k) — S(k)) + (a(k) — S(k)) In each time slot k

H2u) (g + all) — s() +u) —w2®)|| | a@o:# amivals
s(k): # potential departures

u(k): unused service

gtk + Dul) =0 vk |

. [Ilil[u2 (k)] < spax(4 — /1)1 since

u?(k) < spax u(k), and

Elq(k + 1)] = Elq(k)] = Ela(k) —s(k) + u(k)] = 0 = Elu(k)] =pn—2

Kingman Bound p

o

q*(k +1) — q*(k) q(k +1) = q(k) + a(k) — s(k) +u(k)
2
- Zq(k)(a(k) B S(k)) T (a(k) B S(k)) In each time slot k
+2u(k) (q(k) + a(k) —s(k) + u(k)) —u?(k) a(k): # arrivals
s(k): # potential departures
u(k): unused service

. E[q?(k + 1)] — E[g?(k)] = 0 in steady state

yields

E[(a — s)*]
Elq] = 2= 1)

I

i (u i A)J

This term is small compared
to the first term when A - u

Key Fact about Unused Service

qg(k + Du(k) = 0

Join-the-Shortest-Queue (JSQ) Routing
Policy

{ (g1(k + 1) + qo(k + D)uy (k) = 0 J

JSQ

Discrete-time model

Route packet arrivals in each time slot to

the shorter of the two queues, breaking i} :IIIID 1y
ties at random
. | ’
- Well known that JSQ is heavy-traffic

optimal; will derive this result using the
Kingman-type drift argument

10

Universal Lower Bound: Resource Pooling

. For any routing policy, g; + g, Is lower

bounded by the queue length in the L " 1Ime
system where the service resource is 21

pooled together

7
.
» ~
~
~
~
~
~
~
~
~
~
b U

- By the Kingman bound for the single v
queue system, Lower bounding system

L 2
Elq, + q2] = El(a = 5)]+0<1> A

¢ B A Ill‘lil +.542

- Heavy-traffic parameter € = yu; + u, — 4

JSQ: What can go wrong?

Because of the inherent randomness
In the service times, one queue can
become empty when the other is not

- This means that one server is idling 18
(l.e., can have unused service) when

It can be doing work

However, in heavy traffic, this should
happen rarely under the join-the-
shortest queue policy

12

State-Space Collapse

For the servers to avoid unnecessarily idling
we need to show g, = g, under JSQ

- What we actually prove is that
E[llg.ll*] < M,
where M does not depend on the heavy-traffic

parameter e = u; + pu, — A

This is called state-space collapse because this
means q; is small compared to g, + g, which is

0 (3) In expectation (why?)

€

13

qd1 = 4>

q.

Upper Bound for JSQ

Set the drift of V(q) = (3, q;)* equal to zero:
E[V(qk + 1)) —E[V(qk))| =0

Why this choice of I/'(q)?

From the state-space collapse result, we expect the queues to behave like a single queue
as in the lower bound; all queues are roughly equal, so they would all hit zero
“simultaneously”

So we expect)}, q; to behave like a single-server queue

14

Drift Equation

- The terms in the drift equation look very similar to the lower bound, except for
the red term below:

(q1(k + 1) + g (k + 1))2 — (q1(k) + q3 (k))2
= 2(‘11(") + Q> (k))(a1(k) + ay(k) — sy (k) — Sz(k))
+(ay (k) + ay (k) — s,.(k) — 5,(K))°
+2(u1(k) + u, (k))(ql(k +1)+qg,(k + 1))
—(us (k) + u, (1))’

- Lower bounding system:

q%(k + 1) — ¢%(k)
= 2q(k)(a(k) — s(k)) + (alk) — s(k))”
+2u(k)q(k + 1) —u?(k)

Using State-Space Collapse

- The terms in the drift equation look very similar to the lower bound, except for
terms of the form:

(CI1(k +1) + qp(k + 1))(“1(") + Uy (k))
Note that g, (k + 1)u,(k) = 0, but g, (k + 1)u,(k) # 0

But, from state-space collapse, q,(k + 1) = g,(k + 1), and thus,

qz(k + Duy (k) = 0

16

Upper Bound for JSQ

- E|V(q(k+1))| —E|V(q(k))| = 0 in steady state yields

IE’(ql(k-+-1)-+-q2(k-+'1))2 _'(Q1(k)'+'QZ(k))2]

= E[2(q1(k) + q2(0)) (ay (k) + ay (k) — s51(k) — 5,(K))]
+E [(a, (k) + az(k) — 5,(k) — 55(0))”]
+E[2(uy (k) + uy (k) (g1 (k + 1) + g, (k + 1))]

—F [(ul (k) + u, (k))2]

. Thus,

Elg; + q2]

E[(a —5)?]

2€

+of

1

€

)

—2€E|qq + q2]
E[(a — s)?]
o(1)

0(1)

Heavy-Traffic Delay Optimality

- Under JSQ,

L 2
Elq, + q2] = Ella = 5)]+0<1>

2€ €
. This coincides with the lower bound for any policy

D —5)? 1
Elqs + 5] > [(QZ:) L (E)

- JSQ asymptotically minimizes the backlog in heavy traffic

.- By Little’s law, JSQ asymptotically minimizes the average delay in heavy
traffic

Key Steps

Lower Bound
Resource Pooling

Establish State-Space Collapse
Using insight about why the algorithm might achieve the lower bound
We haven't yet discussed how to show state-space collapse

Obtain an Upper Bound

Again using the insight from the lower bound and the state-space collapse to choose an
appropriate function whose drift is equal to zero

State-Space Collapse

(Hajek, 1982)

X Is Markov chain, V(x) is some function (satisfying a certain condition) defined
over the state-space of the Markov chain. If

E(V(Xk+1) — VX)X, = x) < =6,
for V(x) = B, then

lim E (e9V (X)) < M

k—oo

20

A Useful Property of JSQ

. Define W(q) = ||q ||
. Inthe 2-d case, W(q) = % |1 — q3]

. Drift: E[W(q(k + 1)) = W(q(k)) | q(k) = q]

- JSQ:
- If g; > q,, then g,decreases and g, increases, independent of ¢
- Similarly when g, > g,
- Conclusion: Drift is independent of ¢

21

Moments & State-Space Collapse

. E|W(qk +1)) —wW(qk))|q(k) = q] < —6, independent of the heavy-traffic
parameter e

- Following Hajek (1982), this implies the following steady-state estimate:

E(llaLll) = m,
Independent of e

. State-space collapse: Recall that E(};;q;) is Q (i) thus q | Is small compared
to q in heavy-traffic

22

JSQ-MaxWeight for Scheduling with Data
Locality

JSQ-MaxWeight

Task| Type = (1, 2, 4)

local service rate a > ey
remote service rate y Join the Shortest Queue
!,' -- “I ::" ~\‘
Local Remote
gueues -0, -0, Q3 ~Qum - Ome O gueue
MaxWelght Weights: aQ,, yQm+1

e iy e G i+

Heavy-Traffic Regime |» |4

- Some servers do not store data, so they
do not have local tasks

Backup servers for peak hours
. Servers with data are overloaded

Example : :
- Server 3 does not have local tasks Lo

- Task types: Type 1 is local to server 1,
and Type 2 is local to server 2

. Servers with local tasks are overloaded:
M>al,>a

- Heavy-traffic parameter: B @ B

e=2a+y— (A +4,) Server 3 does not
have local tasks

Remote
gqueue

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
’f
-
-

-
-
-

P m———— o
[R
\
ﬁ

Key Steps

Lower Bound
Resource Pooling

Establish State-Space Collapse
Using insight about why the algorithm might achieve the lower bound

Obtain an Upper Bound

Again using the insight from the lower bound and the state-space collapse to choose an
appropriate function whose drift is equal to zero

Universal Lower Bound

M Az

- For any scheduling policy, the backlog is
lower bounded by the queue length in
the system where

- Servers are running at maximum speeds
- The service resource is pooled together e - e

- By the Kingman bound for single queue, @
2 .
E[backlog] > IE[(GZ—ES) | o (g) Lower bounding system

/11+/12: III‘ZCZ-I_V’

JSQ-MaxWeight: What can go wrong?

M Az

- Similar to JSQ, a server can be idling
when there is still unfinished work in the
system

- A server can be working on a remote
task when it has local tasks

- Then it is not running at full speed

|
Q
|
I
@
!
@
|
>
|

- Again, in heavy traffic, these should
happen rarely under the JSQ-
MaxWeight

= e e

State-Space Collapse (v |4

- JSQ tries to balance @, and Q,

- MaxWeight tries to balance aQ, and yQ, T
- Where does the state space collapses to? o T N
0,1 aQq =y0s - QaF
4 ,? - ==
.\ \ Q1 =04 R
emote
q q
gueue
\.
q

>

State-Space Collapse

- When aQ,; = y0Q,, server 1 works on Q,
- Then the system behaves like a JSQ system
- So the queue vector further goes towards

Q1 = 04

The state spgceLoippses to
Qs

>

DR ——

Upper Bound

- Want to prove the system indeed behaves like a JSQ system

- That is to prove Server 1 serves (; most of the time and Server 2 serves Q,
most of the time

- Queue dynamics:

Qmk +1) = Quk) + Ay (k) = Sin(k) + Upn(k), m=1,2,4

. We prove that (S;(k),S,(k),S4(k)) = (S1(k),S3(k), S4(k)), where S;,(k)’s are
“ideal” service: S; (k) and S, (k) have rate a, S,(k) has rate y

Upper Bound

- Then obtaining the upper bound is similar to JSQ

. Setting the drift of V(q) = (3}, ¢;)* equal to zero yields:

[E[backlog] < El(a =)] + 0 (1)

2€ €

. Coincides the universal lower bound for any scheduling policy

Heavy-Traffic Analysis for
Continuous-Time Systems

R. Srikant and Weina Wang
University of lllinois at Urbana-Champaign

Outline

. Single Queue in Continuous Time
. Join-the-Shortest-Queue in Continuous Time

Proportionally Fair Bandwidth Sharing (Wang et al, in progress)

Single Queue In Continuous Time

Single Queue In Continuous Time

- Packet arrivals: Poisson process with rate 4 Y

o

. n(t): # packets Load: p = A/u
n - n+ 1 with rate 4
n—-n—1withrate ulgsgy —— pu—uU

. Service time: exponential with mean 1/u |

. Unused service: U =1 —1g,5¢

- Note that
n-U=20

Equivalent Model: One Link, One Flow Type

Flow arrivals: Poisson process with rate 4

Each flow corresponds to the transfer of a file whose size ~ "~
IS exponentially distributed with mean 1/u O O
C=1
. n(t): # of flows
oo Load: p =A/u
. x: bandwidth allocated to each flow, x = {n’ n
0, ifn=0
n = n+ 1 with rate A
—> u—uu

n —» n — 1 with rate nxu

Unused bandwidth: U =1 —nx =1 — 15,50

Note that
n-U=90

Single Queue

- Want to bound E[n(t)] in steady state

O_/:o
. Set the drift of Lyapunov function V(n) = n* to zero: c—1
E|(n(t + At))2] _E [(”(t))zl Load: p = A/u

= E[An?] =0
. Drift equation:
An? = 2((n+1)? —n?) + (u— ul)((n — 1)? —n?)
=2 —u+Umnm+A+u—uU
=2(p -1 -nu+2U0 -nu+A+pu—uU

Bound on Backlog

An2=2(p—1)-nu+{2U-nuJ+/1+u—uU i

_/
(C :O
| 2U - ny = OJ C=1
o | Elp—uU] = A:}departure rate = arrival rate Load: p = 4/u

. E[An?] =0 in steady state: 0 = 2(p — 1) - E[n] u + 22,
which yields

Join-the-Shortest-Queue In Continuous Time

JSQ

Continuous-time model A I

-+ __HININ® 14

Route arrivals to the shorter of the two queues,] e -
breaking ties at random

] A i
(n1,nz) = (ng + 1,np) with rate A1, <p,3 + 7 1y =ny) Unused service
Uy =1-1450

. 2
(ny,ny) = (ng,n, + 1) with rate A1, 53 + E 1, =n,) Uy =1— 1 50)

(nl, le) — (Tll - 1, le) Wlth I'ate M11{1’L1>0} — ‘Lll — /-llUl
(ny,ny) = (ng,n, — 1) with rate p, 14,50y —> w, — u,U,

State-Space Collapse

- Heavy traffic parameter e = uy + u, — 4

. Similar to the discrete-time model, we prove
that n, = n, in heavy traffic

10

Upper Bound for JSQ

Set the drift of V(n) = (n, + n,)* equal to zero:

E[A(n; +1n3)?] =0
- Drift equation
A (ny +ny)? = A((ny +ny + 1)? — (ny +n,)?)
+(uy — pUp + pp — HzUz)((n1 +n, —1)% —(ng + n2)2)
= 2(ny + np)(A — py — py + Uy + ppUs)
+(A+ uy — Uy + 1y — upUs)
=2(ny +ny)(A — py — pp) + 2(ng +ny)(u Uy + ppUz)
+(A+ uy — Uy + py — upUz)

11

Upper Bound for JSQ

A(ng +ny)% =2 +ny)(A— g —) +[2(n1 + ny) (U Up + ﬂzUz)J
+(A+puy — Uy + py — 1U3)

. Still focus on the term (n, + n,)(u, U, + u,U,)
. NOte that n1U1 — O, but anl + 0
But, from state-space collapse, n, = n,, and thus, n,U; = 0

Then E[A(n; + n,)?] = 0 yields

A 1
E[n, + n,] =E+0<—>

€

Proportionally Fair Bandwidth Sharing

One Link, Two Flow Types

- x,. bandwidth allocated to each flow of type r

Proportionally fair bandwidth allocation:

max n, logx; + n, log x,
{x1,%2}

subject to nixy +nyx, <1
. Solution:
nx; =ny/p, NaXp; =Ny /p,
p = 0: Lagrange multiplier of the constraint
. Stability:
nix1 = P1 NaXa2 = P2
= Ny = P1P, n, = Pp
= (ng,ny) = p(p1,p2)

(1, P2)

State-Space Collapse

nz A

arrival

=%
- ‘."
.
- ‘.‘. 1
% 1
4 o, K
Z 2 o %4 <
O P
o e
1 7 oo
st
Ll o

departure
(p1,p2)

Service rates are proportional to # of flows

When the flow count vector (n,n,) is far from the direction (p4, p»),
the departure rates pull it back

State-Space Collapse

nz A

- Heavy-traffic parameter: e =1—p; — p,
. State space collapse:

Ellln,|l] = o (%)

Dynamics

State transition rates

. A1,
(n{,n,) - (n; + 1,n,) with rate A, C\l-M}:’O
(n,n,) - (n{,n, + 1) with rate A, /,12?*

(nl, nz) — (n1 — 1,Tl2) with rate n1X1Uq
LoadS pl —_ /11/[11

(nl, nz) — (nl,nz — 1) with rate Ny Xo Uy
P2 = A2/ Uz

Unused bandwidth
U=1—-(nyx; +n,x,)
Note that
U>0onlywhenn, =0,n, =0

Bound on Backlog

Set the drift of V(n) = (¢;n, + c,n,)? equal to zero for some ¢, and c,

Drift equation
A (cinq + cny)* = /11((C1(n1 + 1) + cyny)% — (eyny + Cznz)z)

+1, ((clnl + c,(n, + 1))2 — (cynq + cznz)z)
+n1x1,u1((cl(n1 — 1) + cn)* — (g + Cznz)z)

2
TN XU ((C17’l1 + cp(ny — 1)) — (cyng + Cznz)z)

= 2(c1ny + can3) (1A + €45 — ciy Xy — CaNpXo i)
+C2A + c2 Ay + cingx g + CENy Xyl

Drift Analysis

A (c1nq + cyny)* = 2(cyny + Cznz)[(cyh + CoAy — g Xy — Cznzxzﬂz)J

+C2Ay + €3N, + Cingx iy + CoN, XUy

- Weknowthate =1—p;—p,and U =1 —n;x;y —nyx,

1 1
- We should choose ¢; = 02 = to get
1 2

C1A + CoAdy — cnyXq g — CaN Xty = P1 + Py — NyX — NyX,

=—€+U

o NOte that (Cl’l’ll + Cznz)U — O

Drift Analysis

A (c1ny + cany)? =[2(C1n1 + Cz”z)}(ﬁh + oAy — CiMy Xy — CaNpXohy)
+CZA + c5 Ay + cingx g + CEngyxy iy

1

1
We have chosen ¢; = —,¢c, = —
251 Uz

State space collapse: —
na P2

ny _ P1

Then

1 A/ us + A,/ us
P1)nzz 1/ ug 2/ U5 (ny +1,)

_I__
pP1 Tt P2

c1nq + Con, = <
P211 Uz

Drift Analysis

A (g + cany)? = 2(cing + cny) (A1 + €Ay — Ny Xy — CaNpXoiy)

[+612/11 + 5, + cingxq g + czznzxzuzJ

. E|n,.x,.u,.] = A,., r =1,2: departure rate = arrival rate
- Then

IE[clz)Ll + 622/12 + Clzn1x1ﬂ1 + sznzxzﬂz] — 2(/11/l~l% + Az//“‘%)

Bound on Backlog

A (g + cany)? = 2(cing + cny) (A1 + €Ay — Ny Xy — CaNpXoiy)
+CZAy + c5 Ay + cingx g + CEnyxy i

. Setting E[A(cynq + cyn,)?%] = 0 yields

1 1
[E[n1+n2]=g+o -

Weighted Inner Product

- n: projection of n onto the (half) subspace spanned n, 4
by p

. The Lyapunov function V(n) = (n{/u; + n,/u,)? is the

same as V(n) = |ny||* = (p, n)? when we use the
following weighted inner product

(pm)=(pr p2)| i ()

Extending to General Networks

Two Links, Three Flow Types

Proportionally fair bandwidth allocation:

max ng logxy + nq logx; + n, log x, S 11 N
{x0x1,%2} O O O
subjectto ngxy +nyx; < G //11?‘//12—;12\‘
NoXo + NyXo < CZ
Solution:
NgXg = "o nx—n1 nx—nz i
0Xo =) 1X1 =) 2X2 = —, Ny :
p1 + b2 D1 D2 '
p1, P, Lagrange multipliers of the constraints
- Stable: ngxe = pg, Nyx1 = p1, NoXy = P b, = (0, p4, py)

n,

bl — (,01;0; pO)
= (ny,n3,n9) = p1(p1,0,p0) + p2(0, p2, po) /

nq

State-Space Collapse

« M. projection onto the cone
spanned by {b4, b,}

- Heavy-traffic regime: py +p; = (1 —€)Cy, po+p, = (1 —¢€)C,
. State space collapse:

Eflln. [[] = o (%) Ellin, /] _

Bound on Backlog

. Still consider the Lyapunov function V(n) = ||n,||”, with the weighted inner

product
! 0 O\
A1
1 ™
(any=(a1 a; ag)| 0 — 0 ||n2
Ay ng
0 O !
\o 0 7

. Setting E[AV(n)] = 0 yields

2 1
[E[n0+n1+n2]zz+0 —

Bound on Backlog in a General Network

. L: # links in the network

- The state space collapses to an L-dimensional cone

. Setting E [A||n"||2] = 0 yields

Insensitivity

The backlog bound

L 1
[E|backlog| = - + 0 <E>

holds for a general class of phase-type distributions for file sizes
This distribution class can approximate any file size distribution arbitrarily closely
Need a more involved weighted inner product

The delay performance of the proportionally fair bandwidth sharing policy
IS Insensitive to the file size distribution

	data-centers-v1
	Routing, Scheduling, and Networking in Data Centers
	Data Centers
	Tutorial
	Outline of Part I
	Load Balancing
	Load Balancing
	Outline of Part I
	Reliability and Load Balancing
	Replication
	Replication
	Coding: Reduce Storage, Maintain Reliability
	Coding: Improve Reliability, Maintain Storage
	Focus on Load Balancing
	Replication and Load Balancing: (2,1) Code
	Coding and Load Balancing: (4,2) Code
	In this talk….
	Delay comparison: (n,1) vs. (nk,k) code
	Very light traffic (zero queues): (2,1) vs. (4,2) code
	Very light traffic (zero queues): (n,1) vs. (nk,k) code
	General Traffic Case: (n,1) vs. (nk,k) code
	Outline of Part I
	Load-Balancing and Communication
	Load-Balancing and Communication
	Modeling Data Locality
	Task Types
	Max Weighted Backlog
	Achieving Delay Optimality under Data Locality
	Performance
	Delay Optimality
	Delay Optimality for All Heavy-Traffic Regime
	Open Problem
	Outline of Part I
	Jobs with Multiple Tasks
	Single-Server System
	Near Delay Optimality of FUT
	Intuition
	Open Problem
	Outline of Part I
	Data Transfer Flows
	Resource Allocation
	File Transfer Delay
	A Performance Criterion
	Proportional Fairness
	Results
	Open Problem
	Open Problems
	Rest of the Tutorial

	tutorial-mean-field
	Tutorial on Mean-Field Analysis
	Load Balancing
	Random Routing
	Join-the-Shortest-Queue
	Power-of-d-Choices
	Equivalent model: Simple Load-Balancing for Data Locality
	State Representation
	Dynamics
	Power-of-2-Choices: Arrivals
	Power-of-2-Choices: Departures
	Mean-Field Analysis
	Solving for the Fixed Point
	Steps Involved in the MFA
	Power-of-d-Choices
	Power-of-d-Choices: Fixed Point
	Batch-Filling
	Batch-Filling
	Batch-Filling
	Redundancy-d
	Join-the-Idle-Queue
	Incomplete List of References

	discrete-time
	Heavy-Traffic Analysis for Discrete-Time Systems
	Outline
	Kingman Bound for a Single Queue
	Single Queue
	Drift Equation
	Drift Equation (cont’d)
	Kingman Bound
	Key Fact about Unused Service
	Join-the-Shortest-Queue (JSQ) Routing Policy
	JSQ
	Universal Lower Bound: Resource Pooling
	JSQ: What can go wrong?
	State-Space Collapse
	Upper Bound for JSQ
	Drift Equation
	Using State-Space Collapse
	Upper Bound for JSQ
	Heavy-Traffic Delay Optimality
	Key Steps
	State-Space Collapse
	A Useful Property of JSQ
	Moments & State-Space Collapse
	JSQ-MaxWeight for Scheduling with Data Locality
	JSQ-MaxWeight
	Heavy-Traffic Regime
	Key Steps
	Universal Lower Bound
	JSQ-MaxWeight: What can go wrong?
	State-Space Collapse
	State-Space Collapse
	Upper Bound
	Upper Bound

	continuous-time
	Heavy-Traffic Analysis for Continuous-Time Systems
	Outline
	Single Queue in Continuous Time
	Single Queue in Continuous Time
	Equivalent Model: One Link, One Flow Type
	Single Queue
	Bound on Backlog
	Join-the-Shortest-Queue in Continuous Time
	JSQ
	State-Space Collapse
	Upper Bound for JSQ
	Upper Bound for JSQ
	Proportionally Fair Bandwidth Sharing
	One Link, Two Flow Types
	State-Space Collapse
	State-Space Collapse
	Dynamics
	Bound on Backlog
	Drift Analysis
	Drift Analysis
	Drift Analysis
	Bound on Backlog
	Weighted Inner Product
	Extending to General Networks
	Two Links, Three Flow Types
	State-Space Collapse
	Bound on Backlog
	Bound on Backlog in a General Network
	Insensitivity

