
Routing, Scheduling, and
Networking in Data Centers

R. Srikant and Weina Wang
University of Illinois at Urbana-Champaign

Data Centers

Cloud computing

Cloud storageData analytics

Large-scale data processing Search engines

Webpages

Tutorial
• Resource Allocation Problems in Data Centers and Cloud Computing

• Recent results and open problems

• Mean-Field Approximation
• A very brief and high-level introduction

• Heavy-Traffic Approximation
• A very brief and high-level introduction

Outline of Part I
• Load Balancing

• Load-balancing in large data-storage systems

• Scheduling with Data Locality

• Job vs Task Scheduling

• Minimizing data transfer delay in data center networks

Load Balancing
• Which queue to join?

…1 2 3 N4

…

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

?

Load Balancing
• Join-the-Shortest Queue (Overhead?)
• Power-of-two choices: sample two at random, join the

shortest of the two
• ….

…1 2 3 N4

…

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

?

Outline of Part I

• Load-balancing in large data-storage systems

• Scheduling with Data Locality

• Job vs Task Scheduling

• Minimizing data transfer delay in data center networks

Reliability and Load Balancing
• Servers which store files fail occasionally

• Each file is stored in multiple servers to protect against such failures

• This provides a load balancing opportunity
• Which server or servers should we fetch a file from?
• How do different schemes to improve reliability help in terms of load-

balancing?
• Well studied problem, one point of view here

Replication

Server 1 Server 2 Server 3 Server 4

Replication
• (2,1) code

Server 1 Server 2 Server 3 Server 4

• (3,2) code

Coding: Reduce Storage, Maintain Reliability

Server 1 Server 2 Server 3

LotR: A+B

HP: A+BHP: A HP: B

LotR: A LotR: B

• (4,2) code

Coding: Improve Reliability, Maintain Storage

Server 1 Server 2 Server 3

LotR: A+B

HP: A+BHP: A HP: B

LotR: A LotR: B

Server 4

LotR: A+2B

HP: A+2B

Focus on Load Balancing
• For the rest of this part, we will not model server failures

• These will be assumed to occur at a slower timescale than the rate at
which files are accessed from the servers

• We will focus on how to exploit redundancy in file storage (through
replication or coding) to improve the speed with which we can fetch a
file from the servers
• Using load balancing

Replication and Load Balancing: (2,1) Code
File requests

Server 1 Server 2 Server 3 Server 4

Other
Other Other Other

Other
Other
Other
Other

Scheduler

HP

HP

Coding and Load Balancing: (4,2) Code

Server 1 Server 2 Server 3 Server 4

HP

Other
Other Other Other

Other
Other
Other
Other

Need chunks from
two servers, but each
chunk is half the size
of the original photo

HP: A HP: B

LotR: A LotR: B

File requests

LotR: A+B

HP: A+B

LotR: A+2B

HP: A+2B

Scheduler

In this talk….
• (n,1) code (replication):

• Each file is replicated at n different servers
• The size of the each copy of the file is 1

• (nk,k) code
• Each file is encoded into 𝑛𝑛𝑛𝑛 chunks and stored in 𝑛𝑛𝑛𝑛 different servers
• The size of each chunk is 1/𝑘𝑘
• Any 𝑘𝑘 out of the 𝑛𝑛𝑛𝑛 chunks are sufficient to recover the entire file
• Total storage space is the same as above

• Question: Does the delay improve with coding in the large-system
limit (large number of servers, files, arrival rates)?

• “Result” (Li, Ramamoorthy, S., 2016): Under a Poisson
arrival/exponential service-time model, the delay decreases by a
factor of at least

where 𝐻𝐻 𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ harmonic number:
1 + 1

2
+ 1

3
+ ⋯+ 1

𝑘𝑘

Delay comparison: (n,1) vs. (nk,k) code

𝐻𝐻 𝑘𝑘
𝑘𝑘

Very light traffic (zero queues): (2,1) vs. (4,2) code

• File service time is exponentially distributed
• Mean file access delay under (2,1) code (replication):

• Mean file access delay under (4,2) code:

�𝑊𝑊(2,1) = 𝐄𝐄 𝑋𝑋 (𝑋𝑋~Exp(1))
= 1

�𝑊𝑊(4,2) = 𝐄𝐄 max 𝑌𝑌1,𝑌𝑌2

= 3
4

(𝑌𝑌1 and 𝑌𝑌2 are i.i.d. with Exp(2))

Compared with replication, delay improves by 25% under coding

Very light traffic (zero queues): (n,1) vs. (nk,k) code

• Mean file access delay under (n,1) code (replication):

• Mean file access delay under (nk,k) code:

�𝑊𝑊(𝑛𝑛,1) = 𝐄𝐄 𝑋𝑋 (𝑋𝑋~Exp(1))
= 1

�𝑊𝑊(𝑛𝑛𝑛𝑛,𝑘𝑘) = 𝐄𝐄 max
𝑖𝑖=1,2,⋯,𝑘𝑘

𝑌𝑌𝑖𝑖

= 𝐻𝐻 𝑘𝑘
𝑘𝑘

(𝑌𝑌𝑖𝑖 ,∀𝑖𝑖, are i.i.d. with Exp(𝑘𝑘))

General Traffic Case: (n,1) vs. (nk,k) code
• Question: What happens for general arrival rates?
• Answer: in the many-servers limit,

• In the heavy-traffic regime

• Conjecture: in the many-servers limit, for all feasible arrival rates,

lim
𝜆𝜆↑1

�𝑊𝑊(𝑛𝑛𝑛𝑛,𝑘𝑘)

�𝑊𝑊 𝑛𝑛,1 ≤
𝐻𝐻 𝑘𝑘
𝑘𝑘

�𝑊𝑊(𝑛𝑛𝑛𝑛,𝑘𝑘)

�𝑊𝑊 𝑛𝑛,1 ≤
𝐻𝐻 𝑘𝑘
𝑘𝑘

Outline of Part I

• Load-balancing in large data-storage systems

• Scheduling with Data Locality

• Job vs Task Scheduling

• Minimizing data transfer delay in data center networks

• Each server stores certain data

• Each task is associated with a data chunk

• If a task is routed to a server with the required data chunk, then it
executes quickly; otherwise, it has to fetch the data from another server,
thus leading to longer processing times

Load-Balancing and Communication

Servers … ……

A B C D

DataTask

• Each task is associated with a data chunk

Load-Balancing and Communication

Servers … ……

Tasks A
B
B
B

B

A B C D

C DBB

Longer
processing time

Large queueing
delay

DataTask

Local server
for task B

Modeling Data Locality
• For the rest of this part, we will not model the dynamics in the network

• We abstract the network away and assume that

local processing rate > remote processing rate

• We will focus on how to strike the right balance between load-balancing
and communication to maximize throughput and minimize delay

Task Types
• Task type: servers that store its input data (local servers)

Servers …1 2 3 M

A
B

Task

Type = (1, 2, 4)

A A

4

B
B C

Z
C Y

A

Arrival rates λ(1,2,3) λ(1,2,4) λ(1,2,5) λ(i, j, k)… …

serves the queue with the maximum weight• Throughput optimal but …
• Too many queues: O(M3)
• Not delay optimal: [Stolyar 2004, Mandelbaum and Stolyar 2004]

Max Weighted Backlog

Servers …1 2 3 M4

… …

𝛾𝛾

Q(1,2,3) Q(2,3,4) Q(3,4,5) Q(i, j, k)… …

Per task
type queue

M ~ Tens of thousands

α α 𝛾𝛾

When server 2 becomes available:

αQ(1,2,3) αQ(2,3,4) 𝛾𝛾Q(3,4,5) 𝛾𝛾Q(i, j, k)… …Weighted backlogs
viewed by Server 2

Service rates α > 𝛾𝛾

[Tassiulas and Ephremides 1993]

M+1 queues
<< M3

Independent of the number of replicas

Achieving Delay Optimality under Data Locality

Servers …1 2 3 M4

Type = (1, 2, 4)

Local
queues

Remote
queue

Task

Step 1: Join the Shortest Queue

Step 2:
MaxWeight 𝛾𝛾α >

Q1 Q2 Q3 Q4 QM QM+1

Tasks from
overloaded servers

…

𝛾𝛾QM+1αQ4Weights:

[Wang et al. 2013]

Performance
• Maximizes Throughput

• Delay optimality in the following heavy-traffic regime

Servers … …

Overloaded No data storage

Peak hours of data centers

Delay Optimality
• Total backlog (based on Eryilmaz, S. 2012)

𝔼𝔼 �
𝑚𝑚=1

𝑀𝑀+1

𝑄𝑄𝑚𝑚
𝜖𝜖 𝑡𝑡 =

𝜎𝜎2 + 𝜈𝜈2

2𝜖𝜖
+ 𝑜𝑜

1
𝜖𝜖

• Coincides with the lower bound where all the servers are pooled
together and running on full speed

• Asymptotically minimizes the total backlog
• By Little’s law, it asymptotically minimizes the average task delay

Arrival rate
vector

ε
Stability region

Delay Optimality for All Heavy-Traffic Regime

Servers …1 2 3 M4

Type = (1, 2, 4)Task

Join the Shortest Queue

Prioritized scheduling - Local tasks first
- No local tasks: serve the longest queue

Q1 Q2 Q3 Q4 QM…

[Xie and Lu 2015]

Again heavy-traffic
optimal in the sense of
Eryilmaz, S. (2012)

Open Problem
• In our discussion, we considered problems where each job consists

of a single task

• Instead, suppose each job consists of multiple tasks, and a job is
completed only when all the tasks in the job are completed

• Further each task can be allocated to a different server if needed

• Scheduling algorithms which minimize job delays are unknown

• But near-optimality can be achieved when there is no data locality

Outline of Part I

• Load-balancing in large data-storage systems

• Scheduling with Data Locality

• Job vs Task Scheduling (with no data locality)

• Minimizing data transfer delay in data center networks

Jobs with Multiple Tasks
• Matrix-vector multiplication: Mx

• Basic operation for PageRank, regression analysis, …

task

task

task

task

Job

M

x

x

x

ΣM1 M2 M3

M1

M2

M3

Single-Server System

• Fewest-Unassigned-Tasks (FUT) first?
• Analogy to Shortest-Remaining-Processing-Time (SRPT) policy
• Not sample-path optimal for jobs with multiple tasks

Job 1Job 2

Time0 1

Job 2 arrives
FUT:

Time0

Delay
Start:

1 Average latency is smaller

Near Delay Optimality of FUT

• Holding time of a job: amount of time a job spends in the queue
• Single server system: latency − holding time = service time of one task
• More generally: latency − holding time ≤ Constant

Job 1Job 2

Time
FUT:

holding
time

latency
Job 2 arrives

Near delay optimality:
Average holding time of FUT ≤ Average latency of any policy

[Sun, Koksal, Shroff 2017]

Intuition

• Average holding time of FUT = average latency of System A
• Tasks leave System A from the job with the fewest remaining tasks
• For any [0, t], task departures: System A ≥ System B

Job 2Job 3Job 1

System A

Job 2Job 3Job 1

System BFUT Another policy

✔️

✔️

✔️

✔️

Open Problem
• Back to the matrix multiplication example

• The job consists of not only many tasks, but the tasks have to be
executed in multiple stages, i.e., there are precedence constraints

• Delay-optimal or near-optimal scheduling policies for multi-stage,
multi-task jobs are unknown

• Data locality and multiple stages???

Outline of Part I

• Load-balancing in large data-storage systems

• Scheduling with Data Locality

• Job vs Task Scheduling

• Minimizing data transfer delay in data center networks

Data Transfer Flows
• How to allocate bandwidth to flows to minimize file transfer delay?
• Links have bandwidth capacities, shared by flows

… ……

… …

…

Servers

Top of Rack Switches

Core Switches

Share bandwidthShare bandwidth

Resource Allocation
• 𝑥𝑥𝑟𝑟: rate allocated to a flow on route 𝑟𝑟
• 𝑛𝑛𝑟𝑟: # of flows on route 𝑟𝑟
• 𝐶𝐶𝑙𝑙: capacity of link 𝑙𝑙
• Constraints:

�
𝑟𝑟∋𝑙𝑙

𝑛𝑛𝑟𝑟𝑥𝑥𝑟𝑟 ≤ 𝐶𝐶𝑙𝑙 ,∀𝑙𝑙

• Goal: how should we choose 𝑥𝑥𝑟𝑟 to minimize data transfer delay?

File Transfer Delay
• If a flow on route 𝑟𝑟 arrives at time 𝐴𝐴𝑟𝑟 and has file size 𝐹𝐹𝑟𝑟, then its

delay 𝐷𝐷𝑟𝑟 is determined by the equation:

�
𝐴𝐴𝑟𝑟

𝐴𝐴𝑟𝑟+𝐷𝐷𝑟𝑟

𝑥𝑥𝑟𝑟 𝑡𝑡 𝑑𝑑𝑑𝑑 = 𝐹𝐹𝑟𝑟

• 𝐹𝐹𝑟𝑟: random variable
• The choice of 𝑥𝑥𝑟𝑟 affects the delay 𝐷𝐷𝑟𝑟 through (1)

(1)

• Suppose there are N servers in the system
• # of source-destination pairs is 𝑂𝑂 𝑁𝑁2

• # of links in a data center network is 𝐿𝐿 ≪ 𝑁𝑁2

• Example: 𝑁𝑁2~108, 𝐿𝐿~104 in a tree structured data center network

• Goal: 𝔼𝔼[# of flows] ~ 𝑂𝑂 𝐿𝐿 instead of 𝑂𝑂 𝑁𝑁2

A Performance Criterion

Proportional Fairness
• Choose 𝑥𝑥𝑟𝑟 to maximize

�
𝑟𝑟

𝑛𝑛𝑟𝑟 log 𝑥𝑥𝑟𝑟

• log 𝑥𝑥𝑟𝑟: utility of a flow on route 𝑟𝑟 when allocated a rate of 𝑥𝑥𝑟𝑟

• Subject to resource constraints on each link

Results
• Asymptotically tight bounds on total backlog (Kang et al, 2009)

𝔼𝔼 #𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
𝐿𝐿
𝜖𝜖

+ 𝑜𝑜
1
𝜖𝜖

• L: number of saturated links in heavy traffic

• Insensitivity: the bounds hold for a general class of phase-type
distributions for data sizes (Vlasiou et al, 2014)
• This distribution class can approximate any data size distribution

arbitrarily closely

Arrival rate
vector

ε

Capacity region

Open Problem
• The file transfers may occur to achieve some other load-balancing

goal
• Such as to fetch remote data at a server in the data locality problem

• Joint resource allocation for data-transfer and load balancing in the
presence of data locality to achieve optimal or near-optimal job/task
delays is an open problem

Open Problems
• Coding/Replication/Load Balancing Tradeoffs

• Analyzing/minimizing job delay

• Scheduling jobs with multiple stages
• Dependence among tasks puts constraints on scheduling decisions

• Joint design of task scheduling and data transfer

Job TaskTask Task
TaskTask Task

Task

Rest of the Tutorial
• Difficult to analyze most resource allocation schemes exactly

• There are some exceptions

• Two asymptotic regimes
• The number of servers is very large (mean-field limit)
• The traffic load approaches the capacity of the system (heavy-traffic)

• The first regime is perhaps more realistic for data centers

• The second regime often provides insight into why certain policies
behave better than others (even in light to moderate traffic)

Tutorial on Mean-Field
Analysis

R. Srikant and Weina Wang
University of Illinois at Urbana-Champaign

Load Balancing
• Join-the-Shortest-Queue
• Random Routing
• Power-of-d-Choices
• Batch-filling
• Redundancy-d
• Join-the-Idle-Queue

…1 2 3 N4

…

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

?

Arrival process is Poisson(N𝜆𝜆)
Service times are exp(1)

Random Routing
• Route an arrival to a queue uniformly at random
• 𝑁𝑁 separate M/M/1 queues with load 𝜆𝜆
• Queue length:

Pr 𝑄𝑄 ≥ 𝑖𝑖 = 𝜆𝜆𝑖𝑖

…1 2 3 N4

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

…

Can we do better?

Join-the-Shortest-Queue
• Each arrival joins the shortest queue among all the N queues
• Minimizes average delay
• Requires information about all queues: large overhead

…1 2 3 N4

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

…

Power-of-d-Choices
• Each arrival picks d queues at random and joins the shortest one
• Queue length:

lim
𝑛𝑛→∞

Pr 𝑄𝑄 ≥ 𝑖𝑖 = 𝜆𝜆
𝑑𝑑𝑖𝑖−1
𝑑𝑑−1 doubly exponential

…1 2 3 N4

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁Example: d = 2

✔ …

• Each data chunk is in 2 servers: 𝑁𝑁2 places where a data chunk can be

• Arrival checks the servers that have its data and joins the shortest one
• Equivalent to the Power-of-2-Choices

Equivalent model: Simple Load-Balancing for Data Locality

…1 2 3 N4

…

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

State Representation
• Queue length vector: 𝑄𝑄 = 𝑄𝑄1,𝑄𝑄2,𝑄𝑄3,𝑄𝑄4 = 1, 2, 0, 0
• Equivalent representation:

𝑠𝑠𝑖𝑖 𝑡𝑡 : fraction of queues with at least 𝑖𝑖 tasks at time 𝑡𝑡

Q2 Q3 Q4Q1
0

2
1

𝑠𝑠0 = ⁄4 4 = 1
✔ ✔ ✔ ✔

3

𝑠𝑠1 = ⁄2 4 = ⁄1 2
𝑠𝑠2 = ⁄1 4
𝑠𝑠3 = 0

Dynamics
• 𝑠𝑠𝑖𝑖 𝑡𝑡 : fraction of queues with at least 𝑖𝑖 tasks at time 𝑡𝑡
• When does 𝑠𝑠𝑖𝑖 change?

• 𝑠𝑠𝑖𝑖 does not change when a task arrives to queue with < 𝑖𝑖 − 1 tasks or ≥ 𝑖𝑖 tasks
• 𝑠𝑠𝑖𝑖 → 𝑠𝑠𝑖𝑖 + ⁄1 𝑁𝑁 when a task arrives to a queue with 𝑖𝑖 − 1 tasks
• 𝑠𝑠𝑖𝑖 does not change when a task departures from queue with < 𝑖𝑖 tasks or ≥ 𝑖𝑖 + 1 tasks
• 𝑠𝑠𝑖𝑖 → 𝑠𝑠𝑖𝑖 − ⁄1 𝑁𝑁 when a tasks departs from a queue with 𝑖𝑖 tasks

Q2 Q3 Q4Q1
0

2
1

✔

3
𝑠𝑠2 = ⁄1 4

✔

Power-of-2-Choices: Arrivals
• 𝑠𝑠𝑖𝑖 𝑡𝑡 + 𝛿𝛿 = 𝑠𝑠𝑖𝑖 + ⁄1 𝑁𝑁 when a task arrives to a queue with 𝑖𝑖 − 1 tasks
• Happens when an arrival chooses two queues where the shorter one has
𝑖𝑖 − 1 tasks

Probability ≈ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠𝑖𝑖−12 − 𝑠𝑠𝑖𝑖2

…1 2 3 N4

Q2 Q3 Q4 …

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

Q1 QN

𝑠𝑠𝑖𝑖−12 : both queues ≥ 𝑖𝑖 − 1

𝑠𝑠𝑖𝑖2: both queues ≥ 𝑖𝑖

Power-of-2-Choices: Departures

• 𝑠𝑠𝑖𝑖 𝑡𝑡 + 𝛿𝛿 = 𝑠𝑠𝑖𝑖 − ⁄1 𝑁𝑁 when a tasks departs from a queue with 𝑖𝑖 tasks

• # queue with 𝑖𝑖 tasks = 𝑁𝑁 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1

• Probability ≈ 𝑁𝑁 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1 𝛿𝛿

Mean-Field Analysis
• Drift:

𝔼𝔼 �
𝑠𝑠𝑖𝑖 𝑡𝑡 + 𝛿𝛿 − 𝑠𝑠𝑖𝑖 𝑡𝑡

𝛿𝛿
𝑠𝑠 =

1
𝛿𝛿

1
𝑁𝑁
𝑁𝑁𝜆𝜆𝜆𝜆 𝑠𝑠𝑖𝑖−12 − 𝑠𝑠𝑖𝑖2 −

1
𝑁𝑁
𝑁𝑁 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1 𝛿𝛿

= 𝜆𝜆 𝑠𝑠𝑖𝑖−12 − 𝑠𝑠𝑖𝑖2 − 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1

• Mean field approximation:
𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆 𝑠𝑠𝑖𝑖−12 − 𝑠𝑠𝑖𝑖2 − 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1

• Use the fixed point of this set of differential equations as an approximation
for the original system

as 𝑛𝑛 → ∞ (not proved here)

arrival departure

Solving for the Fixed Point
𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆 𝑠𝑠𝑖𝑖−12 − 𝑠𝑠𝑖𝑖2 − 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1

• Fixed point: 𝜆𝜆 𝑠𝑠𝑖𝑖−12 − 𝑠𝑠𝑖𝑖2 = 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1
• Sufficient condition

𝜆𝜆𝑠𝑠𝑖𝑖2 = 𝑠𝑠𝑖𝑖+1, 𝑖𝑖 = 1, 2, …

• Solution: 𝑠𝑠𝑖𝑖 = 𝜆𝜆2𝑖𝑖−1, 𝑖𝑖 = 1, 2, …

• Queue length probability decreases double exponentially

• Uniqueness (not proved here)

Steps Involved in the MFA

• Change the state description in terms of fractions of queues with at least a
certain queue length

• Compute

lim
𝛿𝛿→0

𝐸𝐸
𝑠𝑠𝑖𝑖 𝑡𝑡 + 𝛿𝛿 − 𝑠𝑠𝑖𝑖 𝑡𝑡

𝛿𝛿
|𝑠𝑠𝑖𝑖 𝑡𝑡 = 𝑠𝑠𝑖𝑖

• Use the above as an approximation to ̇𝑠𝑠𝑖𝑖

• Study the differential equations

• Arrival: 𝑠𝑠𝑖𝑖 𝑡𝑡 + 𝛿𝛿 = 𝑠𝑠𝑖𝑖 + ⁄1 𝑁𝑁 when a task arrives to a queue with 𝑖𝑖 − 1 tasks
Probability ≈ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠𝑖𝑖−1𝑑𝑑 − 𝑠𝑠𝑖𝑖𝑑𝑑

• Departure: same as power-of-2-choices

• Drift:

𝔼𝔼 �
𝑠𝑠𝑖𝑖 𝑡𝑡 + 𝛿𝛿 − 𝑠𝑠𝑖𝑖 𝑡𝑡

𝛿𝛿
𝑠𝑠 =

1
𝛿𝛿

1
𝑁𝑁
𝑁𝑁𝜆𝜆𝜆𝜆 𝑠𝑠𝑖𝑖−1𝑑𝑑 − 𝑠𝑠𝑖𝑖𝑑𝑑 −

1
𝑁𝑁
𝑁𝑁 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1 𝛿𝛿

= 𝜆𝜆 𝑠𝑠𝑖𝑖−1𝑑𝑑 − 𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1

• Mean field analysis
𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆 𝑠𝑠𝑖𝑖−1𝑑𝑑 − 𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1

Power-of-d-Choices

as 𝑛𝑛 → ∞ (need to prove)

arrival departure

Power-of-d-Choices: Fixed Point
𝑑𝑑𝑠𝑠𝑖𝑖
𝑑𝑑𝑑𝑑

= 𝜆𝜆 𝑠𝑠𝑖𝑖−1𝑑𝑑 − 𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1

• Fixed point: 𝜆𝜆 𝑠𝑠𝑖𝑖−1𝑑𝑑 − 𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑖𝑖+1 = 0

• Sufficient condition
𝜆𝜆𝑠𝑠𝑖𝑖𝑑𝑑 = 𝑠𝑠𝑖𝑖+1, 𝑖𝑖 = 1, 2, …

• Solution: 𝑠𝑠𝑖𝑖 = 𝜆𝜆
𝑑𝑑𝑖𝑖−1
𝑑𝑑−1 , 𝑖𝑖 = 1, 2, …

Batch-Filling
• Batch arrivals: each batch has 𝑚𝑚 tasks

• Poisson batch arrivals with rate ⁄𝑁𝑁𝑁𝑁 𝑚𝑚
• Total task arrival rate is still 𝑁𝑁𝑁𝑁

• Each batch arrival checks 𝑚𝑚𝑚𝑚 queues

• 𝑑𝑑: probe ratio

task
batch

Batch-Filling
Waterfilling:
• Fill the smallest queue until it equals the second smallest queue
• Then fill these until they become equal to the third smallest queue, and so on…

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

Example: m=4, d = 1.5

Batch-Filling
• Queue length:

lim
𝑛𝑛→∞

Pr 𝑄𝑄 = 𝑖𝑖 =

1 − 𝜆𝜆 𝑖𝑖 = 0,
1 − 𝜆𝜆 𝜆𝜆𝜆𝜆 1 + 𝜆𝜆𝜆𝜆 𝑖𝑖−1 1 ≤ 𝑖𝑖 ≤ �𝑄𝑄 − 1,

1 − 1 − 𝜆𝜆 𝑑𝑑 1 + 𝜆𝜆𝜆𝜆 �𝑄𝑄−1

0
𝑖𝑖 = �𝑄𝑄,

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,
where

�𝑄𝑄 =
log 1

1 − 𝜆𝜆
log 1 + 𝜆𝜆𝜆𝜆

• Finite queue length

Redundancy-d
• Each arrival makes copies at d servers chosen at random
• The other copies are killed once one copy is completed
• Harder to analyze

…1 2 3 N4

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁Example: d = 2

…✘

Join-the-Idle-Queue
• An arrival is routed to one of the idle servers at random if there is any; if not,

the arrival is routed to a server at random
• Queue length:

lim
𝑛𝑛→∞

Pr 𝑄𝑄 ≥ 𝑖𝑖 = 0, 𝑖𝑖 ≥ 2

…1 2 3 N4

…

(𝜆𝜆 < 1)
(𝜇𝜇 = 1)

𝑁𝑁𝑁𝑁

Idle queuesNo Idle queues

Incomplete List of References
• PoD: Vvedenskaya, Dobrushin, Karpelevich (1996), Mitzenmacher (1996)
• Batch: Ying, S., Kang (2015, 2017)
• JIQ: Lu et al (2011), Stolyar (2015,…)
• Redundancy: Gardner et al (2015,…)

• Many other scaling regimes: Borst SIGMETRICS 2017 Talk

Heavy-Traffic Analysis for
Discrete-Time Systems

R. Srikant and Weina Wang
University of Illinois at Urbana-Champaign

Outline

• Kingman Bound for a Single Queue

• Join-the-Shortest-Queue (JSQ) Routing Policy (Eryilmaz, S., 2012)

• JSQ-MaxWeight for Scheduling with Data Locality (Wang et al, 2013)

Kingman Bound for a Single Queue

Single Queue
• 𝑞𝑞(𝑘𝑘 + 1) = 𝑞𝑞(𝑘𝑘) + 𝑎𝑎(𝑘𝑘) − 𝑠𝑠(𝑘𝑘) + 𝑢𝑢(𝑘𝑘)

• 𝑎𝑎(𝑘𝑘): # arrivals
• 𝑠𝑠(𝑘𝑘): # potential departures
• 𝑢𝑢(𝑘𝑘): unused service

• Want to bound 𝔼𝔼 𝑞𝑞 𝑘𝑘 in steady state
• Set the drift of Lyapunov function 𝑉𝑉 𝑞𝑞 = 𝑞𝑞2 to zero:

𝔼𝔼 𝑞𝑞2 𝑘𝑘 + 1 − 𝔼𝔼 𝑞𝑞2 𝑘𝑘 = 0

• Drift equation:
𝑞𝑞2 𝑘𝑘 + 1 − 𝑞𝑞2 𝑘𝑘

= 2𝑞𝑞 𝑘𝑘 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘
2

+2𝑢𝑢 𝑘𝑘 𝑞𝑞 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑢𝑢 𝑘𝑘 − 𝑢𝑢2 𝑘𝑘

𝜆𝜆 𝜇𝜇

Drift Equation
𝑞𝑞2 𝑘𝑘 + 1 − 𝑞𝑞2 𝑘𝑘

= 2𝑞𝑞 𝑘𝑘 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 2

+2𝑢𝑢 𝑘𝑘 𝑞𝑞 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑢𝑢 𝑘𝑘 − 𝑢𝑢2 𝑘𝑘

• 𝔼𝔼 𝑞𝑞 𝑘𝑘 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 = 𝜆𝜆 − 𝜇𝜇 𝔼𝔼 𝑞𝑞 𝑘𝑘

• 𝔼𝔼 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 2 → 𝜎𝜎2 as 𝜆𝜆 → 𝜇𝜇

𝜆𝜆 𝜇𝜇

In each time slot k,
𝑎𝑎 𝑘𝑘 : # arrivals
𝑠𝑠 𝑘𝑘 : # potential departures
𝑢𝑢 𝑘𝑘 : unused service

𝑞𝑞(𝑘𝑘 + 1) = 𝑞𝑞(𝑘𝑘) + 𝑎𝑎(𝑘𝑘) − 𝑠𝑠(𝑘𝑘) + 𝑢𝑢(𝑘𝑘)

𝑞𝑞2 𝑘𝑘 + 1 − 𝑞𝑞2 𝑘𝑘

= 2𝑞𝑞 𝑘𝑘 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 2

+2𝑢𝑢 𝑘𝑘 𝑞𝑞 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑢𝑢 𝑘𝑘 − 𝑢𝑢2 𝑘𝑘

• 𝑞𝑞 𝑘𝑘 + 1 𝑢𝑢 𝑘𝑘 = 0 ∀𝑘𝑘

• 𝔼𝔼 𝑢𝑢2 𝑘𝑘 ≤ 𝑠𝑠max 𝜇𝜇 − 𝜆𝜆 since

𝑢𝑢2 𝑘𝑘 ≤ 𝑠𝑠max 𝑢𝑢 𝑘𝑘 , and

𝔼𝔼 𝑞𝑞 𝑘𝑘 + 1 = 𝔼𝔼 𝑞𝑞 𝑘𝑘 ⇒ 𝔼𝔼 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑢𝑢 𝑘𝑘 = 0 ⇒ 𝔼𝔼 𝑢𝑢 𝑘𝑘 = 𝜇𝜇 − 𝜆𝜆

Drift Equation (cont’d) 𝜆𝜆 𝜇𝜇

In each time slot k,
𝑎𝑎 𝑘𝑘 : # arrivals
𝑠𝑠 𝑘𝑘 : # potential departures
𝑢𝑢 𝑘𝑘 : unused service

𝑞𝑞(𝑘𝑘 + 1) = 𝑞𝑞(𝑘𝑘) + 𝑎𝑎(𝑘𝑘) − 𝑠𝑠(𝑘𝑘) + 𝑢𝑢(𝑘𝑘)

𝑞𝑞2 𝑘𝑘 + 1 − 𝑞𝑞2 𝑘𝑘

= 2𝑞𝑞 𝑘𝑘 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 2

+2𝑢𝑢 𝑘𝑘 𝑞𝑞 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑢𝑢 𝑘𝑘 − 𝑢𝑢2 𝑘𝑘

• 𝔼𝔼 𝑞𝑞2 𝑘𝑘 + 1 − 𝔼𝔼 𝑞𝑞2 𝑘𝑘 = 0 in steady state
yields

𝔼𝔼 𝑞𝑞 =
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

2 𝜇𝜇 − 𝜆𝜆
+ 𝑜𝑜

1
𝜇𝜇 − 𝜆𝜆

Kingman Bound 𝜆𝜆 𝜇𝜇

In each time slot k,
𝑎𝑎 𝑘𝑘 : # arrivals
𝑠𝑠 𝑘𝑘 : # potential departures
𝑢𝑢 𝑘𝑘 : unused service

𝑞𝑞(𝑘𝑘 + 1) = 𝑞𝑞(𝑘𝑘) + 𝑎𝑎(𝑘𝑘) − 𝑠𝑠(𝑘𝑘) + 𝑢𝑢(𝑘𝑘)

This term is small compared
to the first term when 𝜆𝜆 → 𝜇𝜇

Key Fact about Unused Service

𝑞𝑞 𝑘𝑘 + 1 𝑢𝑢 𝑘𝑘 = 0

Join-the-Shortest-Queue (JSQ) Routing
Policy

𝑞𝑞1 𝑘𝑘 + 1 + 𝑞𝑞2 𝑘𝑘 + 1 𝑢𝑢1 𝑘𝑘 ≈ 0

JSQ
• Discrete-time model

• Route packet arrivals in each time slot to
the shorter of the two queues, breaking
ties at random

• Well known that JSQ is heavy-traffic
optimal; will derive this result using the
Kingman-type drift argument

10

𝜆𝜆
𝜇𝜇1

𝜇𝜇2

Universal Lower Bound: Resource Pooling
• For any routing policy, 𝑞𝑞1 + 𝑞𝑞2 is lower

bounded by the queue length in the
system where the service resource is
pooled together

• Heavy-traffic parameter 𝜖𝜖 = 𝜇𝜇1 + 𝜇𝜇2 − 𝜆𝜆

• By the Kingman bound for the single
queue system,

𝔼𝔼 𝑞𝑞1 + 𝑞𝑞2 ≥
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

2𝜖𝜖
+ 𝑜𝑜

1
𝜖𝜖 𝜆𝜆 𝜇𝜇1 + 𝜇𝜇2

𝜆𝜆
𝜇𝜇1

𝜇𝜇2

Lower bounding system

JSQ: What can go wrong?
• Because of the inherent randomness

in the service times, one queue can
become empty when the other is not

• This means that one server is idling
(i.e., can have unused service) when
it can be doing work

• However, in heavy traffic, this should
happen rarely under the join-the-
shortest queue policy

12

𝜆𝜆
𝜇𝜇1

𝜇𝜇2

State-Space Collapse
• For the servers to avoid unnecessarily idling

we need to show 𝑞𝑞1 ≈ 𝑞𝑞2 under JSQ

• What we actually prove is that
𝔼𝔼 𝑞𝑞⊥ 2 ≤ 𝑀𝑀,

where 𝑀𝑀 does not depend on the heavy-traffic
parameter 𝜖𝜖 = 𝜇𝜇1 + 𝜇𝜇2 − 𝜆𝜆

• This is called state-space collapse because this
means 𝒒𝒒⊥ is small compared to 𝑞𝑞1 + 𝑞𝑞2 which is
𝑂𝑂 1

𝜖𝜖
in expectation (why?)

13

𝑞𝑞1 = 𝑞𝑞2

𝒒𝒒

𝒒𝒒⊥

Upper Bound for JSQ
• Set the drift of 𝑉𝑉 𝑞𝑞 = ∑𝑙𝑙 𝑞𝑞𝑙𝑙 2 equal to zero:

𝔼𝔼 𝑉𝑉 𝑞𝑞 𝑘𝑘 + 1 − 𝔼𝔼 𝑉𝑉 𝑞𝑞 𝑘𝑘 = 0

• Why this choice of 𝑉𝑉 𝑞𝑞 ?
• From the state-space collapse result, we expect the queues to behave like a single queue

as in the lower bound; all queues are roughly equal, so they would all hit zero
“simultaneously”

• So we expect ∑𝑙𝑙 𝑞𝑞𝑙𝑙 to behave like a single-server queue

14

Drift Equation
• The terms in the drift equation look very similar to the lower bound, except for

the red term below:
𝑞𝑞1 𝑘𝑘 + 1 + 𝑞𝑞2 𝑘𝑘 + 1

2
− 𝑞𝑞1 𝑘𝑘 + 𝑞𝑞2 𝑘𝑘

2

= 2 𝑞𝑞1 𝑘𝑘 + 𝑞𝑞2 𝑘𝑘 𝑎𝑎1 𝑘𝑘 + 𝑎𝑎2 𝑘𝑘 − 𝑠𝑠1 𝑘𝑘 − 𝑠𝑠2 𝑘𝑘
+ 𝑎𝑎1 𝑘𝑘 + 𝑎𝑎2 𝑘𝑘 − 𝑠𝑠1 𝑘𝑘 − 𝑠𝑠2 𝑘𝑘

2

+2 𝑢𝑢1 𝑘𝑘 + 𝑢𝑢2 𝑘𝑘 𝑞𝑞1 𝑘𝑘 + 1 + 𝑞𝑞2 𝑘𝑘 + 1
− 𝑢𝑢1 𝑘𝑘 + 𝑢𝑢2 𝑘𝑘

2

• Lower bounding system:

𝑞𝑞2 𝑘𝑘 + 1 − 𝑞𝑞2 𝑘𝑘
= 2𝑞𝑞 𝑘𝑘 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘 + 𝑎𝑎 𝑘𝑘 − 𝑠𝑠 𝑘𝑘

2

+2𝑢𝑢 𝑘𝑘 𝑞𝑞 𝑘𝑘 + 1 − 𝑢𝑢2 𝑘𝑘

Using State-Space Collapse
• The terms in the drift equation look very similar to the lower bound, except for

terms of the form:

𝑞𝑞1 𝑘𝑘 + 1 + 𝑞𝑞2 𝑘𝑘 + 1 𝑢𝑢1 𝑘𝑘 + 𝑢𝑢2 𝑘𝑘

• Note that 𝑞𝑞1 𝑘𝑘 + 1 𝑢𝑢1 𝑘𝑘 = 0, but 𝑞𝑞2 𝑘𝑘 + 1 𝑢𝑢1 𝑘𝑘 ≠ 0

• But, from state-space collapse, 𝑞𝑞1 𝑘𝑘 + 1 ≈ 𝑞𝑞2 𝑘𝑘 + 1 , and thus,

𝑞𝑞2 𝑘𝑘 + 1 𝑢𝑢1 𝑘𝑘 ≈ 0

16

Upper Bound for JSQ
• 𝔼𝔼 𝑉𝑉 𝑞𝑞 𝑘𝑘 + 1 − 𝔼𝔼 𝑉𝑉 𝑞𝑞 𝑘𝑘 = 0 in steady state yields

𝔼𝔼 𝑞𝑞1 𝑘𝑘 + 1 + 𝑞𝑞2 𝑘𝑘 + 1
2
− 𝑞𝑞1 𝑘𝑘 + 𝑞𝑞2 𝑘𝑘

2
0

= 𝔼𝔼 2 𝑞𝑞1 𝑘𝑘 + 𝑞𝑞2 𝑘𝑘 𝑎𝑎1 𝑘𝑘 + 𝑎𝑎2 𝑘𝑘 − 𝑠𝑠1 𝑘𝑘 − 𝑠𝑠2 𝑘𝑘 −2𝜖𝜖𝔼𝔼 𝑞𝑞1 + 𝑞𝑞2
+𝔼𝔼 𝑎𝑎1 𝑘𝑘 + 𝑎𝑎2 𝑘𝑘 − 𝑠𝑠1 𝑘𝑘 − 𝑠𝑠2 𝑘𝑘

2
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

+𝔼𝔼 2 𝑢𝑢1 𝑘𝑘 + 𝑢𝑢2 𝑘𝑘 𝑞𝑞1 𝑘𝑘 + 1 + 𝑞𝑞2 𝑘𝑘 + 1 𝑜𝑜 1

−𝔼𝔼 𝑢𝑢1 𝑘𝑘 + 𝑢𝑢2 𝑘𝑘
2

𝑜𝑜 1

• Thus,

𝔼𝔼 𝑞𝑞1 + 𝑞𝑞2 =
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

2𝜖𝜖
+ 𝑜𝑜

1
𝜖𝜖

Heavy-Traffic Delay Optimality
• Under JSQ,

𝔼𝔼 𝑞𝑞1 + 𝑞𝑞2 =
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

2𝜖𝜖
+ 𝑜𝑜

1
𝜖𝜖

• This coincides with the lower bound for any policy

𝔼𝔼 𝑞𝑞1 + 𝑞𝑞2 ≥
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

2𝜖𝜖
+ 𝑜𝑜

1
𝜖𝜖

• JSQ asymptotically minimizes the backlog in heavy traffic
• By Little’s law, JSQ asymptotically minimizes the average delay in heavy

traffic

Key Steps
• Lower Bound

• Resource Pooling

• Establish State-Space Collapse
• Using insight about why the algorithm might achieve the lower bound
• We haven’t yet discussed how to show state-space collapse

• Obtain an Upper Bound
• Again using the insight from the lower bound and the state-space collapse to choose an

appropriate function whose drift is equal to zero

State-Space Collapse
(Hajek, 1982)

X is Markov chain, V(x) is some function (satisfying a certain condition) defined
over the state-space of the Markov chain. If

𝐸𝐸 𝑉𝑉 𝑋𝑋𝑘𝑘+1 − 𝑉𝑉 𝑥𝑥 𝑋𝑋𝑘𝑘 = 𝑥𝑥) ≤ −𝛿𝛿,
for 𝑉𝑉 𝑥𝑥 ≥ 𝐵𝐵, then

lim
𝑘𝑘→∞

𝐸𝐸 𝑒𝑒𝜃𝜃𝜃𝜃 𝑋𝑋𝑘𝑘 ≤ 𝑀𝑀𝛿𝛿

20

A Useful Property of JSQ
• Define 𝑊𝑊 𝒒𝒒 = 𝒒𝒒⊥
• In the 2-d case, 𝑊𝑊 𝒒𝒒 = 1

√2
|q1 − q2|

• Drift: 𝔼𝔼 𝑊𝑊 𝒒𝒒 𝑘𝑘 + 1 −𝑊𝑊 𝒒𝒒 𝑘𝑘 | 𝒒𝒒 𝑘𝑘 = 𝒒𝒒

• JSQ:
• If 𝑞𝑞1 > 𝑞𝑞2, then 𝑞𝑞1decreases and 𝑞𝑞2 increases, independent of ε
• Similarly when 𝑞𝑞2 > 𝑞𝑞1
• Conclusion: Drift is independent of ε

21

Moments & State-Space Collapse
• 𝐸𝐸 𝑊𝑊 𝒒𝒒 𝑘𝑘 + 1 −𝑊𝑊 𝒒𝒒 𝑘𝑘 𝒒𝒒 𝑘𝑘 = 𝒒𝒒] ≤ −𝛿𝛿, independent of the heavy-traffic

parameter 𝜖𝜖

• Following Hajek (1982), this implies the following steady-state estimate:
𝐸𝐸 𝒒𝒒⊥ ≤ 𝑀𝑀,

independent of 𝜖𝜖

• State-space collapse: Recall that 𝐸𝐸(∑𝑙𝑙 𝑞𝑞𝑙𝑙) is Ω 1
𝜖𝜖

; thus 𝒒𝒒⊥is small compared
to 𝒒𝒒 in heavy-traffic

22

JSQ-MaxWeight for Scheduling with Data
Locality

JSQ-MaxWeight

Servers …1 2 3 M4

Type = (1, 2, 4)

Local
queues

Remote
queue

Join the Shortest Queue

Q1 Q2 Q3 QM QM+1…

Weights: 𝛼𝛼Q4, 𝛾𝛾QM+1

Task

MaxWeight

Q4

local service rate 𝛼𝛼 >
remote service rate 𝛾𝛾

• Some servers do not store data, so they
do not have local tasks
• Backup servers for peak hours

• Servers with data are overloaded

Example
• Server 3 does not have local tasks
• Task types: Type 1 is local to server 1,

and Type 2 is local to server 2
• Servers with local tasks are overloaded:
𝜆𝜆1 > 𝛼𝛼, 𝜆𝜆2 > 𝛼𝛼

• Heavy-traffic parameter:
𝜖𝜖 = 2𝛼𝛼 + 𝛾𝛾 − 𝜆𝜆1 + 𝜆𝜆2

Heavy-Traffic Regime

1

Remote
queue

Q1 Q3 Q4

𝛼𝛼
𝛾𝛾

2

Q2

Server 3 does not
have local tasks

𝜆𝜆1 𝜆𝜆2

3

Key Steps
• Lower Bound

• Resource Pooling

• Establish State-Space Collapse
• Using insight about why the algorithm might achieve the lower bound

• Obtain an Upper Bound
• Again using the insight from the lower bound and the state-space collapse to choose an

appropriate function whose drift is equal to zero

Universal Lower Bound
• For any scheduling policy, the backlog is

lower bounded by the queue length in
the system where
• Servers are running at maximum speeds
• The service resource is pooled together

• By the Kingman bound for single queue,

𝔼𝔼 backlog ≥
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

2𝜖𝜖
+ 𝑜𝑜

1
𝜖𝜖

𝜆𝜆1 + 𝜆𝜆2 2𝛼𝛼 + 𝛾𝛾

Lower bounding system

𝜆𝜆1 𝜆𝜆2

1 32

JSQ-MaxWeight: What can go wrong?
• Similar to JSQ, a server can be idling

when there is still unfinished work in the
system

• A server can be working on a remote
task when it has local tasks

• Then it is not running at full speed

• Again, in heavy traffic, these should
happen rarely under the JSQ-
MaxWeight

1 3

Remote
queue

Q1 Q3 Q4

𝛼𝛼
𝛾𝛾

2

Q2

𝜆𝜆1 𝜆𝜆2

State-Space Collapse
• JSQ tries to balance 𝑄𝑄1 and 𝑄𝑄4
• MaxWeight tries to balance 𝛼𝛼𝑄𝑄1 and 𝛾𝛾𝑄𝑄4
• Where does the state space collapses to?

1 3

Remote
queue

Q1 Q3 Q4

𝛼𝛼
𝛾𝛾

2

Q2

𝜆𝜆1 𝜆𝜆2

𝑄𝑄1 = 𝑄𝑄4

𝛼𝛼𝛼𝛼1 = 𝛾𝛾𝛾𝛾4

𝑄𝑄1

𝑄𝑄4

𝒒𝒒

𝒒𝒒

𝒒𝒒
?

• When 𝛼𝛼𝑄𝑄1 ≥ 𝛾𝛾𝑄𝑄4, server 1 works on 𝑄𝑄1
• Then the system behaves like a JSQ system
• So the queue vector further goes towards
𝑄𝑄1 = 𝑄𝑄4

• The state space collapses to

𝑄𝑄1 = 𝑄𝑄2 = 𝑄𝑄4

• Then we expect the queues to behave like a
single queue as in the lower bound; all queues
are roughly equal, so they would all hit zero
“simultaneously”, and all servers are running on
full speeds

State-Space Collapse

Q1 Q3 Q4

𝛼𝛼

Q2

𝜆𝜆1 𝜆𝜆2

𝑄𝑄1 = 𝑄𝑄4

𝛼𝛼𝛼𝛼1 = 𝛾𝛾𝛾𝛾4

𝑄𝑄1

𝑄𝑄4

𝒒𝒒
?

1 32

Upper Bound
• Want to prove the system indeed behaves like a JSQ system

• That is to prove Server 1 serves 𝑄𝑄1 most of the time and Server 2 serves 𝑄𝑄2
most of the time

• Queue dynamics:

𝑄𝑄𝑚𝑚 𝑘𝑘 + 1 = 𝑄𝑄𝑚𝑚 𝑘𝑘 + 𝐴𝐴𝑚𝑚 𝑘𝑘 − 𝑆𝑆𝑚𝑚 𝑘𝑘 + 𝑈𝑈𝑚𝑚 𝑘𝑘 , 𝑚𝑚 = 1, 2, 4

• We prove that 𝑆𝑆1 𝑘𝑘 , 𝑆𝑆2 𝑘𝑘 , 𝑆𝑆4 𝑘𝑘 ≈ 𝑆𝑆1′ 𝑘𝑘 , 𝑆𝑆2′ 𝑘𝑘 , 𝑆𝑆4′ 𝑘𝑘 , where 𝑆𝑆𝑚𝑚′ 𝑘𝑘 ’s are
“ideal” service: 𝑆𝑆1′ 𝑘𝑘 and 𝑆𝑆2′ 𝑘𝑘 have rate 𝛼𝛼, 𝑆𝑆4′ 𝑘𝑘 has rate 𝛾𝛾

Upper Bound
• Then obtaining the upper bound is similar to JSQ

• Setting the drift of 𝑉𝑉 𝑞𝑞 = ∑𝑙𝑙 𝑞𝑞𝑙𝑙 2 equal to zero yields:

𝔼𝔼 backlog ≤
𝔼𝔼 𝑎𝑎 − 𝑠𝑠 2

2𝜖𝜖
+ 𝑜𝑜

1
𝜖𝜖

• Coincides the universal lower bound for any scheduling policy

Heavy-Traffic Analysis for
Continuous-Time Systems

R. Srikant and Weina Wang
University of Illinois at Urbana-Champaign

Outline

• Single Queue in Continuous Time

• Join-the-Shortest-Queue in Continuous Time

• Proportionally Fair Bandwidth Sharing (Wang et al, in progress)

Single Queue in Continuous Time

Single Queue in Continuous Time
• Packet arrivals: Poisson process with rate 𝜆𝜆
• Service time: exponential with mean 1/𝜇𝜇

• 𝑛𝑛 𝑡𝑡 : # packets
𝑛𝑛 → 𝑛𝑛 + 1 with rate 𝜆𝜆
𝑛𝑛 → 𝑛𝑛 − 1 with rate 𝜇𝜇𝟏𝟏 𝑛𝑛>0

• Unused service: 𝑈𝑈 = 1 − 𝟏𝟏 𝑛𝑛>0

• Note that
𝑛𝑛 ⋅ 𝑈𝑈 = 0

𝜆𝜆 𝜇𝜇

Load: 𝜌𝜌 = 𝜆𝜆/𝜇𝜇

𝜇𝜇 − 𝜇𝜇𝜇𝜇

Equivalent Model: One Link, One Flow Type
• Flow arrivals: Poisson process with rate 𝜆𝜆
• Each flow corresponds to the transfer of a file whose size

is exponentially distributed with mean 1/𝜇𝜇

• 𝑛𝑛 𝑡𝑡 : # of flows

• 𝑥𝑥: bandwidth allocated to each flow, 𝑥𝑥 = �
1
𝑛𝑛

, if 𝑛𝑛 > 0
0, if 𝑛𝑛 = 0

𝑛𝑛 → 𝑛𝑛 + 1 with rate 𝜆𝜆
𝑛𝑛 → 𝑛𝑛 − 1 with rate 𝑛𝑛𝑛𝑛𝑛𝑛

• Unused bandwidth: 𝑈𝑈 = 1 − 𝑛𝑛𝑛𝑛 = 1 − 𝟏𝟏 𝑛𝑛>0
• Note that

𝑛𝑛 ⋅ 𝑈𝑈 = 0

𝜆𝜆, 𝜇𝜇

𝐶𝐶 = 1

Load: 𝜌𝜌 = 𝜆𝜆/𝜇𝜇

𝜇𝜇 − 𝜇𝜇𝜇𝜇

Single Queue
• Want to bound 𝔼𝔼 𝑛𝑛 𝑡𝑡 in steady state

• Set the drift of Lyapunov function 𝑉𝑉 𝑛𝑛 = 𝑛𝑛2 to zero:

𝔼𝔼 𝑛𝑛 𝑡𝑡 + Δ𝑡𝑡 2 = 𝔼𝔼 𝑛𝑛 𝑡𝑡 2

⟺ 𝔼𝔼 Δ 𝑛𝑛2 = 0
• Drift equation:

Δ 𝑛𝑛2 = 𝜆𝜆 𝑛𝑛 + 1 2 − 𝑛𝑛2 + 𝜇𝜇 − 𝜇𝜇𝜇𝜇 𝑛𝑛 − 1 2 − 𝑛𝑛2

= 2 𝜆𝜆 − 𝜇𝜇 + 𝑈𝑈 𝑛𝑛 + 𝜆𝜆 + 𝜇𝜇 − 𝜇𝜇𝜇𝜇
= 2 𝜌𝜌 − 1 ⋅ 𝑛𝑛𝑛𝑛 + 2𝑈𝑈 ⋅ 𝑛𝑛𝑛𝑛 + 𝜆𝜆 + 𝜇𝜇 − 𝜇𝜇𝜇𝜇

𝜆𝜆, 𝜇𝜇

𝐶𝐶 = 1

Load: 𝜌𝜌 = 𝜆𝜆/𝜇𝜇

Δ 𝑛𝑛2 = 2 𝜌𝜌 − 1 ⋅ 𝑛𝑛𝑛𝑛 + 2𝑈𝑈 ⋅ 𝑛𝑛𝑛𝑛 + 𝜆𝜆 + 𝜇𝜇 − 𝜇𝜇𝜇𝜇

• 2𝑈𝑈 ⋅ 𝑛𝑛𝑛𝑛 = 0

• 𝔼𝔼 𝜇𝜇 − 𝜇𝜇𝜇𝜇 = 𝜆𝜆: departure rate = arrival rate

• 𝔼𝔼 Δ 𝑛𝑛2 = 0 in steady state: 0 = 2 𝜌𝜌 − 1 ⋅ 𝔼𝔼 𝑛𝑛 𝜇𝜇 + 2𝜆𝜆,
which yields

𝔼𝔼 𝑛𝑛 =
𝜌𝜌

1 − 𝜌𝜌

Bound on Backlog
𝜆𝜆, 𝜇𝜇

𝐶𝐶 = 1

`

Load: 𝜌𝜌 = 𝜆𝜆/𝜇𝜇

Join-the-Shortest-Queue in Continuous Time

JSQ
• Continuous-time model

• Route arrivals to the shorter of the two queues,
breaking ties at random

𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1 + 1,𝑛𝑛2 with rate 𝜆𝜆𝟏𝟏 𝑛𝑛1<𝑛𝑛2 + 𝜆𝜆
2
𝟏𝟏 𝑛𝑛1=𝑛𝑛2

𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1,𝑛𝑛2 + 1 with rate 𝜆𝜆𝟏𝟏 𝑛𝑛1>𝑛𝑛2 + 𝜆𝜆
2
𝟏𝟏 𝑛𝑛1=𝑛𝑛2

𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1 − 1,𝑛𝑛2 with rate 𝜇𝜇1𝟏𝟏 𝑛𝑛1>0

𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1,𝑛𝑛2 − 1 with rate 𝜇𝜇2𝟏𝟏 𝑛𝑛2>0

9

𝜆𝜆
𝜇𝜇1

𝜇𝜇2

Unused service
𝑈𝑈1 = 1 − 𝟏𝟏 𝑛𝑛1>0
𝑈𝑈2 = 1 − 𝟏𝟏 𝑛𝑛2>0

𝜇𝜇1 − 𝜇𝜇1𝑈𝑈1
𝜇𝜇2 − 𝜇𝜇2𝑈𝑈2

State-Space Collapse

• Heavy traffic parameter 𝜖𝜖 = 𝜇𝜇1 + 𝜇𝜇2 − 𝜆𝜆

• Similar to the discrete-time model, we prove
that 𝑛𝑛1 ≈ 𝑛𝑛2 in heavy traffic

10

𝑛𝑛1 = 𝑛𝑛2

𝒏𝒏

𝒏𝒏⊥

Upper Bound for JSQ
• Set the drift of 𝑉𝑉 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 2 equal to zero:

𝔼𝔼 Δ 𝑛𝑛1 + 𝑛𝑛2 2 = 0
• Drift equation

Δ 𝑛𝑛1 + 𝑛𝑛2 2 = 𝜆𝜆 𝑛𝑛1 + 𝑛𝑛2 + 1 2 − 𝑛𝑛1 + 𝑛𝑛2 2

+ 𝜇𝜇1 − 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2 − 𝜇𝜇2𝑈𝑈2 𝑛𝑛1 + 𝑛𝑛2 − 1 2 − 𝑛𝑛1 + 𝑛𝑛2 2

= 2 𝑛𝑛1 + 𝑛𝑛2 𝜆𝜆 − 𝜇𝜇1 − 𝜇𝜇2 + 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2𝑈𝑈2
+ 𝜆𝜆 + 𝜇𝜇1 − 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2 − 𝜇𝜇2𝑈𝑈2

= 2 𝑛𝑛1 + 𝑛𝑛2 𝜆𝜆 − 𝜇𝜇1 − 𝜇𝜇2 + 2 𝑛𝑛1 + 𝑛𝑛2 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2𝑈𝑈2
+ 𝜆𝜆 + 𝜇𝜇1 − 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2 − 𝜇𝜇2𝑈𝑈2

11

Upper Bound for JSQ
Δ 𝑛𝑛1 + 𝑛𝑛2 2 = 2 𝑛𝑛1 + 𝑛𝑛2 𝜆𝜆 − 𝜇𝜇1 − 𝜇𝜇2 + 2 𝑛𝑛1 + 𝑛𝑛2 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2𝑈𝑈2

+ 𝜆𝜆 + 𝜇𝜇1 − 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2 − 𝜇𝜇2𝑈𝑈2

• Still focus on the term 𝑛𝑛1 + 𝑛𝑛2 𝜇𝜇1𝑈𝑈1 + 𝜇𝜇2𝑈𝑈2
• Note that 𝑛𝑛1𝑈𝑈1 = 0, but 𝑛𝑛2𝑈𝑈1 ≠ 0
• But, from state-space collapse, 𝑛𝑛1 ≈ 𝑛𝑛2, and thus, 𝑛𝑛2𝑈𝑈1 ≈ 0

• Then 𝔼𝔼 Δ 𝑛𝑛1 + 𝑛𝑛2 2 = 0 yields

𝔼𝔼 𝑛𝑛1 + 𝑛𝑛2 =
𝜆𝜆
𝜖𝜖

+ 𝑜𝑜
1
𝜖𝜖

Proportionally Fair Bandwidth Sharing

One Link, Two Flow Types
• 𝑥𝑥𝑟𝑟: bandwidth allocated to each flow of type 𝑟𝑟
• Proportionally fair bandwidth allocation:

max
𝑥𝑥1,𝑥𝑥2

𝑛𝑛1 log 𝑥𝑥1 + 𝑛𝑛2 log 𝑥𝑥2

subject to 𝑛𝑛1𝑥𝑥1 + 𝑛𝑛2𝑥𝑥2 ≤ 1
• Solution:

𝑛𝑛1𝑥𝑥1 = ⁄𝑛𝑛1 𝑝𝑝 , 𝑛𝑛2𝑥𝑥2 = ⁄𝑛𝑛2 𝑝𝑝 ,
𝑝𝑝 ≥ 0: Lagrange multiplier of the constraint

• Stability:
𝑛𝑛1𝑥𝑥1 ≈ 𝜌𝜌1, 𝑛𝑛2𝑥𝑥2 ≈ 𝜌𝜌2

⇒ 𝑛𝑛1 ≈ 𝜌𝜌1𝑝𝑝, 𝑛𝑛2 ≈ 𝜌𝜌2𝑝𝑝
⇒ 𝑛𝑛1,𝑛𝑛2 ≈ 𝑝𝑝 𝜌𝜌1,𝜌𝜌2

𝜆𝜆1, 𝜇𝜇1

𝜆𝜆2,𝜇𝜇2

𝜌𝜌1,𝜌𝜌2

𝒏𝒏

arrival

departure

State-Space Collapse

𝜌𝜌1,𝜌𝜌2 𝑛𝑛1

Service rates are proportional to # of flows

When the flow count vector 𝑛𝑛1,𝑛𝑛2 is far from the direction 𝜌𝜌1,𝜌𝜌2 ,
the departure rates pull it back

𝑛𝑛2

• Heavy-traffic parameter: 𝜖𝜖 = 1 − 𝜌𝜌1 − 𝜌𝜌2
• State space collapse:

𝔼𝔼 𝒏𝒏⊥ = 𝑜𝑜
1
𝜖𝜖

,
𝔼𝔼 𝒏𝒏⊥
𝔼𝔼 𝒏𝒏

= 𝑜𝑜 𝜖𝜖

State-Space Collapse

𝝆𝝆

𝑛𝑛1

𝑛𝑛2

𝒏𝒏

𝒏𝒏⊥

Dynamics
• State transition rates

𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1 + 1,𝑛𝑛2 with rate 𝜆𝜆1
𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1,𝑛𝑛2 + 1 with rate 𝜆𝜆2
𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1 − 1,𝑛𝑛2 with rate 𝑛𝑛1𝑥𝑥1𝜇𝜇1
𝑛𝑛1,𝑛𝑛2 → 𝑛𝑛1,𝑛𝑛2 − 1 with rate 𝑛𝑛2𝑥𝑥2𝜇𝜇2

• Unused bandwidth
𝑈𝑈 = 1 − 𝑛𝑛1𝑥𝑥1 + 𝑛𝑛2𝑥𝑥2

• Note that
𝑈𝑈 > 0 only when 𝑛𝑛1 = 0,𝑛𝑛2 = 0

𝜆𝜆1, 𝜇𝜇1

𝜆𝜆2,𝜇𝜇2

Loads: 𝜌𝜌1 = 𝜆𝜆1/𝜇𝜇1
𝜌𝜌2 = 𝜆𝜆2/𝜇𝜇2

Bound on Backlog
• Set the drift of 𝑉𝑉 𝑛𝑛 = 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2 equal to zero for some 𝑐𝑐1 and 𝑐𝑐2

• Drift equation
Δ 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2 = 𝜆𝜆1 𝑐𝑐1 𝑛𝑛1 + 1 + 𝑐𝑐2𝑛𝑛2 2 − 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2

+𝜆𝜆2 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2 𝑛𝑛2 + 1 2 − 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2

+𝑛𝑛1𝑥𝑥1𝜇𝜇1 𝑐𝑐1 𝑛𝑛1 − 1 + 𝑐𝑐2𝑛𝑛2 2 − 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2

+𝑛𝑛2𝑥𝑥2𝜇𝜇2 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2 𝑛𝑛2 − 1 2 − 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2

= 2 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 𝑐𝑐1𝜆𝜆1 + 𝑐𝑐2𝜆𝜆2 − 𝑐𝑐1𝑛𝑛1𝑥𝑥1𝜇𝜇1 − 𝑐𝑐2𝑛𝑛2𝑥𝑥2𝜇𝜇2
+𝑐𝑐12𝜆𝜆1 + 𝑐𝑐22𝜆𝜆2 + 𝑐𝑐12𝑛𝑛1𝑥𝑥1𝜇𝜇1 + 𝑐𝑐22𝑛𝑛2𝑥𝑥2𝜇𝜇2

Drift Analysis
Δ 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2 = 2 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 𝑐𝑐1𝜆𝜆1 + 𝑐𝑐2𝜆𝜆2 − 𝑐𝑐1𝑛𝑛1𝑥𝑥1𝜇𝜇1 − 𝑐𝑐2𝑛𝑛2𝑥𝑥2𝜇𝜇2

+𝑐𝑐12𝜆𝜆1 + 𝑐𝑐22𝜆𝜆2 + 𝑐𝑐12𝑛𝑛1𝑥𝑥1𝜇𝜇1 + 𝑐𝑐22𝑛𝑛2𝑥𝑥2𝜇𝜇2

• We know that 𝜖𝜖 = 1 − 𝜌𝜌1 − 𝜌𝜌2 and 𝑈𝑈 = 1 − 𝑛𝑛1𝑥𝑥1 − 𝑛𝑛2𝑥𝑥2

• We should choose 𝑐𝑐1 = 1
𝜇𝜇1

, 𝑐𝑐2 = 1
𝜇𝜇2

to get

𝑐𝑐1𝜆𝜆1 + 𝑐𝑐2𝜆𝜆2 − 𝑐𝑐1𝑛𝑛1𝑥𝑥1𝜇𝜇1 − 𝑐𝑐2𝑛𝑛2𝑥𝑥2𝜇𝜇2 = 𝜌𝜌1 + 𝜌𝜌2 − 𝑛𝑛1𝑥𝑥1 − 𝑛𝑛2𝑥𝑥2
= −𝜖𝜖 + 𝑈𝑈

• Note that 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 𝑈𝑈 = 0

Drift Analysis
Δ 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2 = 2 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 𝑐𝑐1𝜆𝜆1 + 𝑐𝑐2𝜆𝜆2 − 𝑐𝑐1𝑛𝑛1𝑥𝑥1𝜇𝜇1 − 𝑐𝑐2𝑛𝑛2𝑥𝑥2𝜇𝜇2

+𝑐𝑐12𝜆𝜆1 + 𝑐𝑐22𝜆𝜆2 + 𝑐𝑐12𝑛𝑛1𝑥𝑥1𝜇𝜇1 + 𝑐𝑐22𝑛𝑛2𝑥𝑥2𝜇𝜇2

• We have chosen 𝑐𝑐1 = 1
𝜇𝜇1

, 𝑐𝑐2 = 1
𝜇𝜇2

• State space collapse: 𝑛𝑛1
𝑛𝑛2
≈ 𝜌𝜌1

𝜌𝜌2

• Then

𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 ≈
𝜌𝜌1
𝜌𝜌2𝜇𝜇1

+
1
𝜇𝜇2

𝑛𝑛2 ≈
⁄𝜆𝜆1 𝜇𝜇12 + ⁄𝜆𝜆2 𝜇𝜇22

𝜌𝜌1 + 𝜌𝜌2
𝑛𝑛1 + 𝑛𝑛2

Drift Analysis
Δ 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2 = 2 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 𝑐𝑐1𝜆𝜆1 + 𝑐𝑐2𝜆𝜆2 − 𝑐𝑐1𝑛𝑛1𝑥𝑥1𝜇𝜇1 − 𝑐𝑐2𝑛𝑛2𝑥𝑥2𝜇𝜇2

+𝑐𝑐12𝜆𝜆1 + 𝑐𝑐22𝜆𝜆2 + 𝑐𝑐12𝑛𝑛1𝑥𝑥1𝜇𝜇1 + 𝑐𝑐22𝑛𝑛2𝑥𝑥2𝜇𝜇2

• 𝔼𝔼 𝑛𝑛𝑟𝑟𝑥𝑥𝑟𝑟𝜇𝜇𝑟𝑟 = 𝜆𝜆𝑟𝑟, 𝑟𝑟 = 1,2: departure rate = arrival rate

• Then

𝔼𝔼 𝑐𝑐12𝜆𝜆1 + 𝑐𝑐22𝜆𝜆2 + 𝑐𝑐12𝑛𝑛1𝑥𝑥1𝜇𝜇1 + 𝑐𝑐22𝑛𝑛2𝑥𝑥2𝜇𝜇2 = 2 ⁄𝜆𝜆1 𝜇𝜇12 + ⁄𝜆𝜆2 𝜇𝜇22

Bound on Backlog
Δ 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2 = 2 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 𝑐𝑐1𝜆𝜆1 + 𝑐𝑐2𝜆𝜆2 − 𝑐𝑐1𝑛𝑛1𝑥𝑥1𝜇𝜇1 − 𝑐𝑐2𝑛𝑛2𝑥𝑥2𝜇𝜇2

+𝑐𝑐12𝜆𝜆1 + 𝑐𝑐22𝜆𝜆2 + 𝑐𝑐12𝑛𝑛1𝑥𝑥1𝜇𝜇1 + 𝑐𝑐22𝑛𝑛2𝑥𝑥2𝜇𝜇2

• Setting 𝔼𝔼 Δ 𝑐𝑐1𝑛𝑛1 + 𝑐𝑐2𝑛𝑛2 2 = 0 yields

𝔼𝔼 𝑛𝑛1 + 𝑛𝑛2 =
1
𝜖𝜖

+ 𝑜𝑜
1
𝜖𝜖

Weighted Inner Product
• 𝒏𝒏∥: projection of 𝒏𝒏 onto the (half) subspace spanned

by 𝝆𝝆

• The Lyapunov function 𝑉𝑉 𝑛𝑛 = ⁄𝑛𝑛1 𝜇𝜇1 + ⁄𝑛𝑛2 𝜇𝜇2 2 is the
same as 𝑉𝑉 𝑛𝑛 = 𝒏𝒏∥

2
= 𝝆𝝆,𝒏𝒏 2 when we use the

following weighted inner product

𝝆𝝆,𝒏𝒏 = 𝜌𝜌1 𝜌𝜌2

1
𝜆𝜆1

0

0
1
𝜆𝜆2

𝑛𝑛1
𝑛𝑛2

= ⁄𝑛𝑛1 𝜇𝜇1 + ⁄𝑛𝑛2 𝜇𝜇2

𝝆𝝆

𝑛𝑛1

𝑛𝑛2

𝒏𝒏

𝒏𝒏∥ 𝒏𝒏⊥

Extending to General Networks

Two Links, Three Flow Types
• Proportionally fair bandwidth allocation:

max
𝑥𝑥0,𝑥𝑥1,𝑥𝑥2

𝑛𝑛0 log 𝑥𝑥0 + 𝑛𝑛1 log 𝑥𝑥1 + 𝑛𝑛2 log 𝑥𝑥2
subject to 𝑛𝑛0𝑥𝑥0 + 𝑛𝑛1𝑥𝑥1 ≤ 𝐶𝐶1

𝑛𝑛0𝑥𝑥0 + 𝑛𝑛2𝑥𝑥2 ≤ 𝐶𝐶2
• Solution:

𝑛𝑛0𝑥𝑥0 =
𝑛𝑛0

𝑝𝑝1 + 𝑝𝑝2
, 𝑛𝑛1𝑥𝑥1 =

𝑛𝑛1
𝑝𝑝1

, 𝑛𝑛2𝑥𝑥2 =
𝑛𝑛2
𝑝𝑝2

,

𝑝𝑝1,𝑝𝑝2: Lagrange multipliers of the constraints

• Stable: 𝑛𝑛0𝑥𝑥0 ≈ 𝜌𝜌0, 𝑛𝑛1𝑥𝑥1 ≈ 𝜌𝜌1, 𝑛𝑛2𝑥𝑥2 ≈ 𝜌𝜌2

⇒ 𝑛𝑛1,𝑛𝑛2,𝑛𝑛0 ≈ 𝑝𝑝1 𝜌𝜌1, 0,𝜌𝜌0 + 𝑝𝑝2 0,𝜌𝜌2,𝜌𝜌0

𝜆𝜆0,𝜇𝜇0

𝜆𝜆1, 𝜇𝜇1 𝜆𝜆2,𝜇𝜇2

𝒃𝒃2 = 0,𝜌𝜌2,𝜌𝜌0
𝑛𝑛2

𝑛𝑛1

𝑛𝑛0

𝒃𝒃1 = 𝜌𝜌1, 0,𝜌𝜌0

State-Space Collapse

𝒃𝒃2

𝑛𝑛2
𝑛𝑛1

𝑛𝑛0

𝒃𝒃1

𝒏𝒏
𝒏𝒏∥

𝒏𝒏⊥ • 𝒏𝒏∥: projection onto the cone
spanned by 𝒃𝒃1,𝒃𝒃2

• Heavy-traffic regime: 𝜌𝜌0 + 𝜌𝜌1 = 1 − 𝜖𝜖 𝐶𝐶1, 𝜌𝜌0+𝜌𝜌2 = 1 − 𝜖𝜖 𝐶𝐶2
• State space collapse:

𝔼𝔼 𝒏𝒏⊥ = 𝑜𝑜
1
𝜖𝜖

,
𝔼𝔼 𝒏𝒏⊥
𝔼𝔼 𝒏𝒏

= 𝑜𝑜 𝜖𝜖

Bound on Backlog
• Still consider the Lyapunov function 𝑉𝑉 𝑛𝑛 = 𝒏𝒏∥

2, with the weighted inner
product

𝒂𝒂,𝒏𝒏 = 𝑎𝑎1 𝑎𝑎2 𝑎𝑎0

1
𝜆𝜆1

0 0

0
1
𝜆𝜆2

0

0 0
1
𝜆𝜆0

𝑛𝑛1
𝑛𝑛2
𝑛𝑛0

• Setting 𝔼𝔼 Δ𝑉𝑉 𝑛𝑛 = 0 yields

𝔼𝔼 𝑛𝑛0 + 𝑛𝑛1 + 𝑛𝑛2 =
2
𝜖𝜖

+ 𝑜𝑜
1
𝜖𝜖

Bound on Backlog in a General Network
• 𝐿𝐿: # links in the network

• The state space collapses to an 𝐿𝐿-dimensional cone

• Setting 𝔼𝔼 Δ 𝒏𝒏∥
2 = 0 yields

𝔼𝔼 �
𝑟𝑟

𝑛𝑛𝑟𝑟 =
𝐿𝐿
𝜖𝜖

+ 𝑜𝑜
1
𝜖𝜖

Insensitivity
• The backlog bound

𝔼𝔼 backlog =
𝐿𝐿
𝜖𝜖

+ 𝑜𝑜
1
𝜖𝜖

holds for a general class of phase-type distributions for file sizes
• This distribution class can approximate any file size distribution arbitrarily closely
• Need a more involved weighted inner product

• The delay performance of the proportionally fair bandwidth sharing policy
is insensitive to the file size distribution

	data-centers-v1
	Routing, Scheduling, and Networking in Data Centers
	Data Centers
	Tutorial
	Outline of Part I
	Load Balancing
	Load Balancing
	Outline of Part I
	Reliability and Load Balancing
	Replication
	Replication
	Coding: Reduce Storage, Maintain Reliability
	Coding: Improve Reliability, Maintain Storage
	Focus on Load Balancing
	Replication and Load Balancing: (2,1) Code
	Coding and Load Balancing: (4,2) Code
	In this talk….
	Delay comparison: (n,1) vs. (nk,k) code
	Very light traffic (zero queues): (2,1) vs. (4,2) code
	Very light traffic (zero queues): (n,1) vs. (nk,k) code
	General Traffic Case: (n,1) vs. (nk,k) code
	Outline of Part I
	Load-Balancing and Communication
	Load-Balancing and Communication
	Modeling Data Locality
	Task Types
	Max Weighted Backlog
	Achieving Delay Optimality under Data Locality
	Performance
	Delay Optimality
	Delay Optimality for All Heavy-Traffic Regime
	Open Problem
	Outline of Part I
	Jobs with Multiple Tasks
	Single-Server System
	Near Delay Optimality of FUT
	Intuition
	Open Problem
	Outline of Part I
	Data Transfer Flows
	Resource Allocation
	File Transfer Delay
	A Performance Criterion
	Proportional Fairness
	Results
	Open Problem
	Open Problems
	Rest of the Tutorial

	tutorial-mean-field
	Tutorial on Mean-Field Analysis
	Load Balancing
	Random Routing
	Join-the-Shortest-Queue
	Power-of-d-Choices
	Equivalent model: Simple Load-Balancing for Data Locality
	State Representation
	Dynamics
	Power-of-2-Choices: Arrivals
	Power-of-2-Choices: Departures
	Mean-Field Analysis
	Solving for the Fixed Point
	Steps Involved in the MFA
	Power-of-d-Choices
	Power-of-d-Choices: Fixed Point
	Batch-Filling
	Batch-Filling
	Batch-Filling
	Redundancy-d
	Join-the-Idle-Queue
	Incomplete List of References

	discrete-time
	Heavy-Traffic Analysis for Discrete-Time Systems
	Outline
	Kingman Bound for a Single Queue
	Single Queue
	Drift Equation
	Drift Equation (cont’d)
	Kingman Bound
	Key Fact about Unused Service
	Join-the-Shortest-Queue (JSQ) Routing Policy
	JSQ
	Universal Lower Bound: Resource Pooling
	JSQ: What can go wrong?
	State-Space Collapse
	Upper Bound for JSQ
	Drift Equation
	Using State-Space Collapse
	Upper Bound for JSQ
	Heavy-Traffic Delay Optimality
	Key Steps
	State-Space Collapse
	A Useful Property of JSQ
	Moments & State-Space Collapse
	JSQ-MaxWeight for Scheduling with Data Locality
	JSQ-MaxWeight
	Heavy-Traffic Regime
	Key Steps
	Universal Lower Bound
	JSQ-MaxWeight: What can go wrong?
	State-Space Collapse
	State-Space Collapse
	Upper Bound
	Upper Bound

	continuous-time
	Heavy-Traffic Analysis for Continuous-Time Systems
	Outline
	Single Queue in Continuous Time
	Single Queue in Continuous Time
	Equivalent Model: One Link, One Flow Type
	Single Queue
	Bound on Backlog
	Join-the-Shortest-Queue in Continuous Time
	JSQ
	State-Space Collapse
	Upper Bound for JSQ
	Upper Bound for JSQ
	Proportionally Fair Bandwidth Sharing
	One Link, Two Flow Types
	State-Space Collapse
	State-Space Collapse
	Dynamics
	Bound on Backlog
	Drift Analysis
	Drift Analysis
	Drift Analysis
	Bound on Backlog
	Weighted Inner Product
	Extending to General Networks
	Two Links, Three Flow Types
	State-Space Collapse
	Bound on Backlog
	Bound on Backlog in a General Network
	Insensitivity

