Routing, Scheduling, and Networking in Data Centers

R. Srikant and Weina Wang University of Illinois at Urbana-Champaign

Data Centers

Large-scale data processing

Cloud computing

Data analytics

Google Analytics

Cloud storage

Tutorial

- Resource Allocation Problems in Data Centers and Cloud Computing
 - Recent results and open problems

- Mean-Field Approximation
 - A very brief and high-level introduction

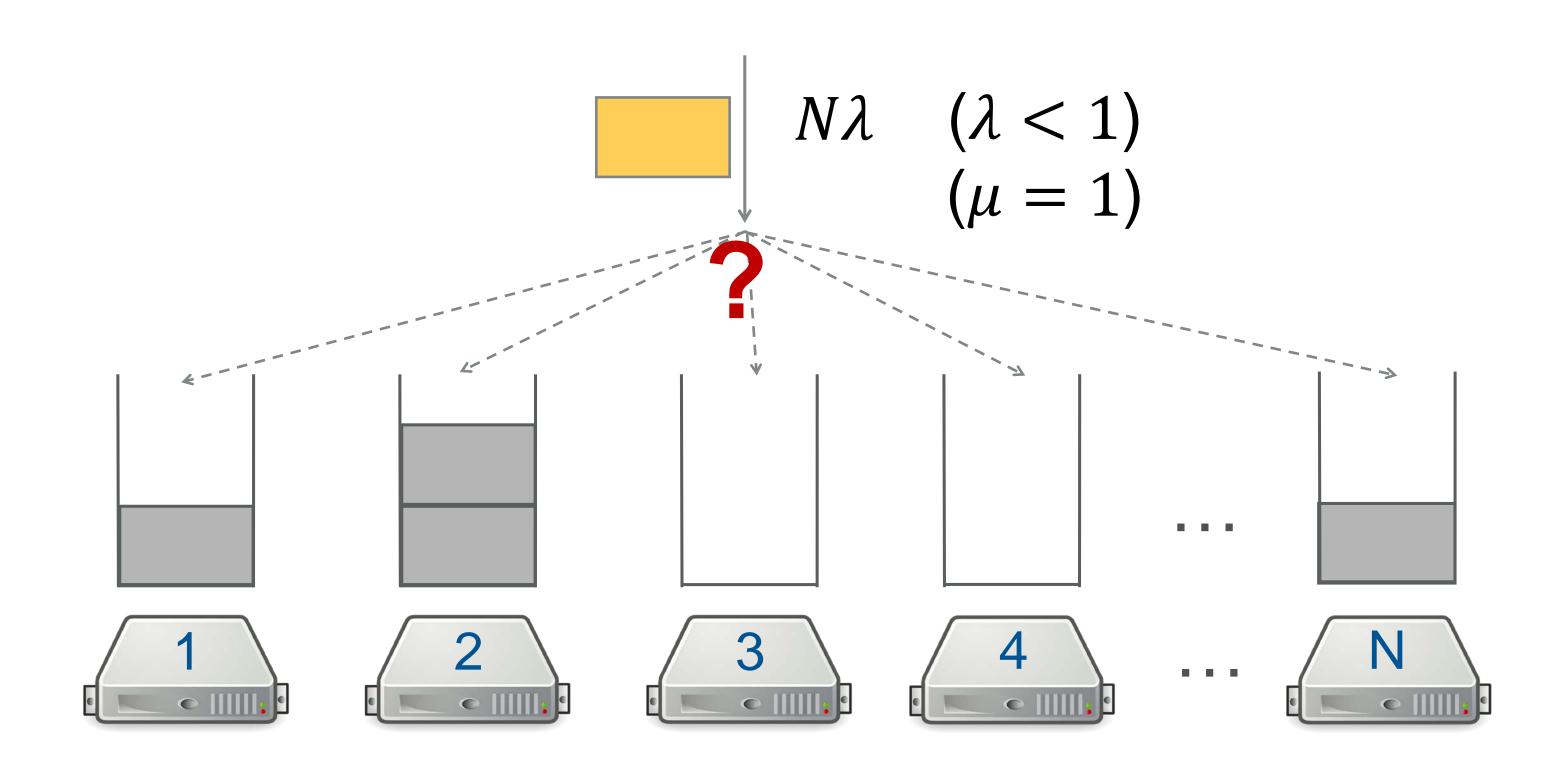
- Heavy-Traffic Approximation
 - A very brief and high-level introduction

Outline of Part I

- Load Balancing
- Load-balancing in large data-storage systems
- Scheduling with Data Locality
- Job vs Task Scheduling
- Minimizing data transfer delay in data center networks

Load Balancing

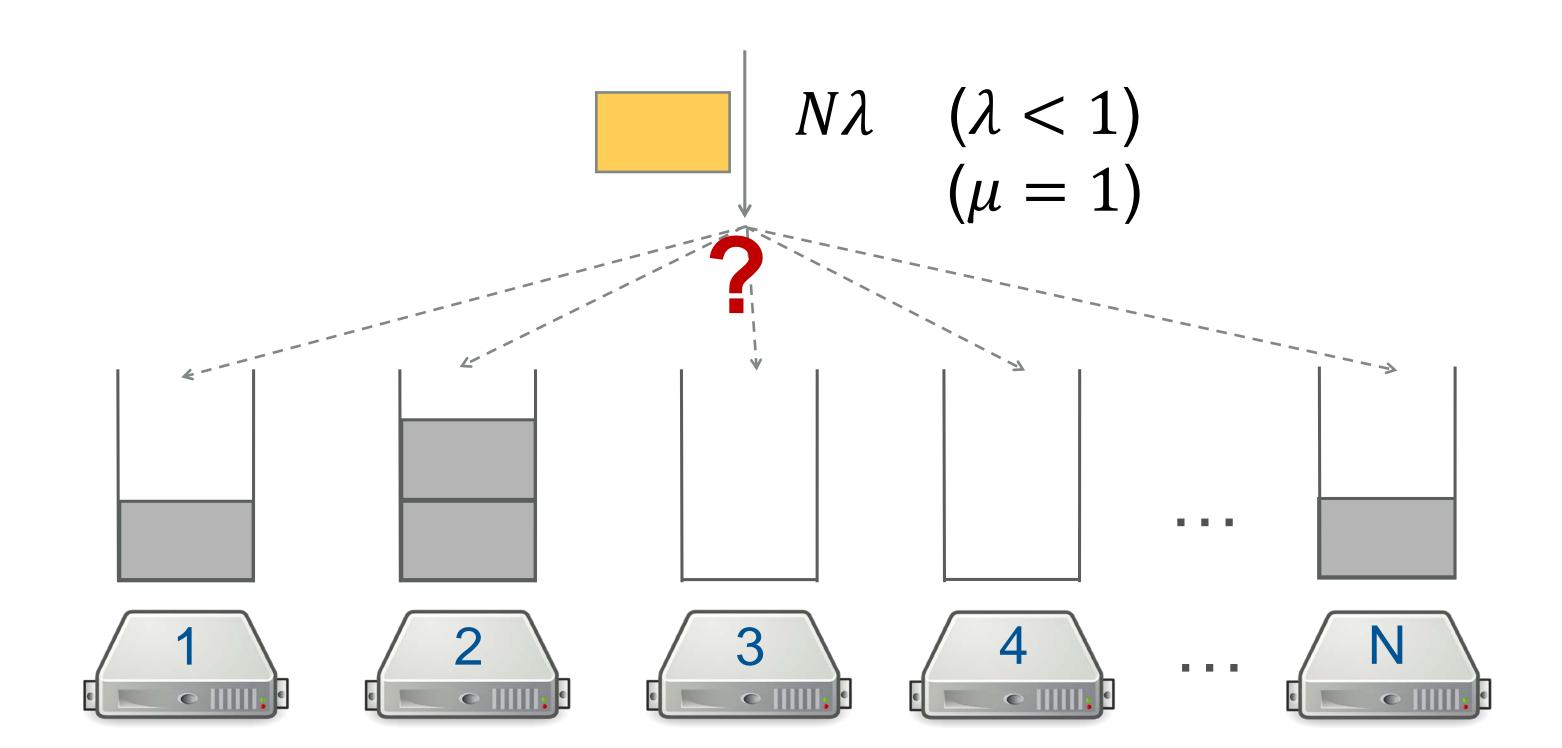
Which queue to join?



Load Balancing

- Join-the-Shortest Queue (Overhead?)
- Power-of-two choices: sample two at random, join the shortest of the two

•



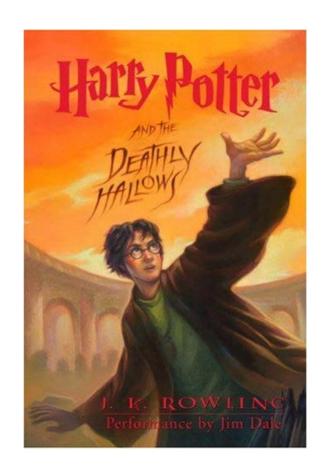
Outline of Part I

- Load-balancing in large data-storage systems
- Scheduling with Data Locality
- Job vs Task Scheduling
- Minimizing data transfer delay in data center networks

Reliability and Load Balancing

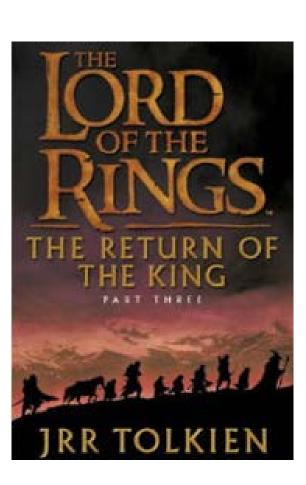
- Servers which store files fail occasionally
- Each file is stored in multiple servers to protect against such failures
- This provides a load balancing opportunity
 - Which server or servers should we fetch a file from?
 - How do different schemes to improve reliability help in terms of loadbalancing?
 - Well studied problem, one point of view here

Replication



Server 2

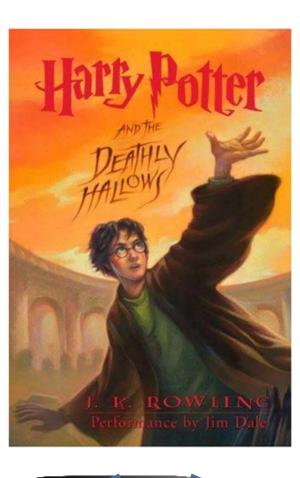
Server 3



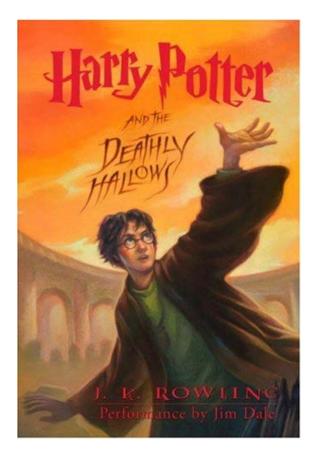
Server 4

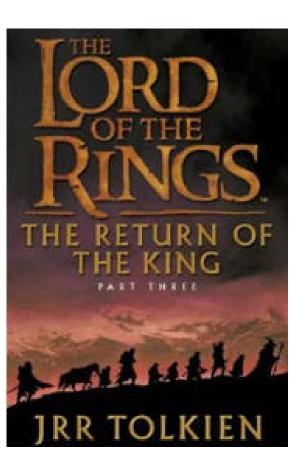
Replication

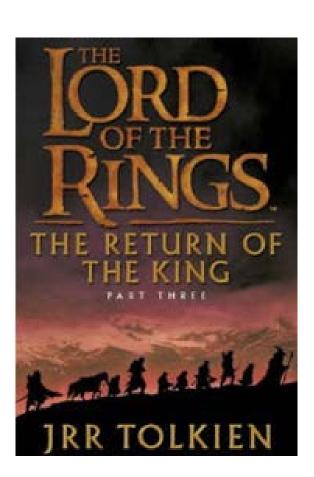
• (2,1) code



Server 1







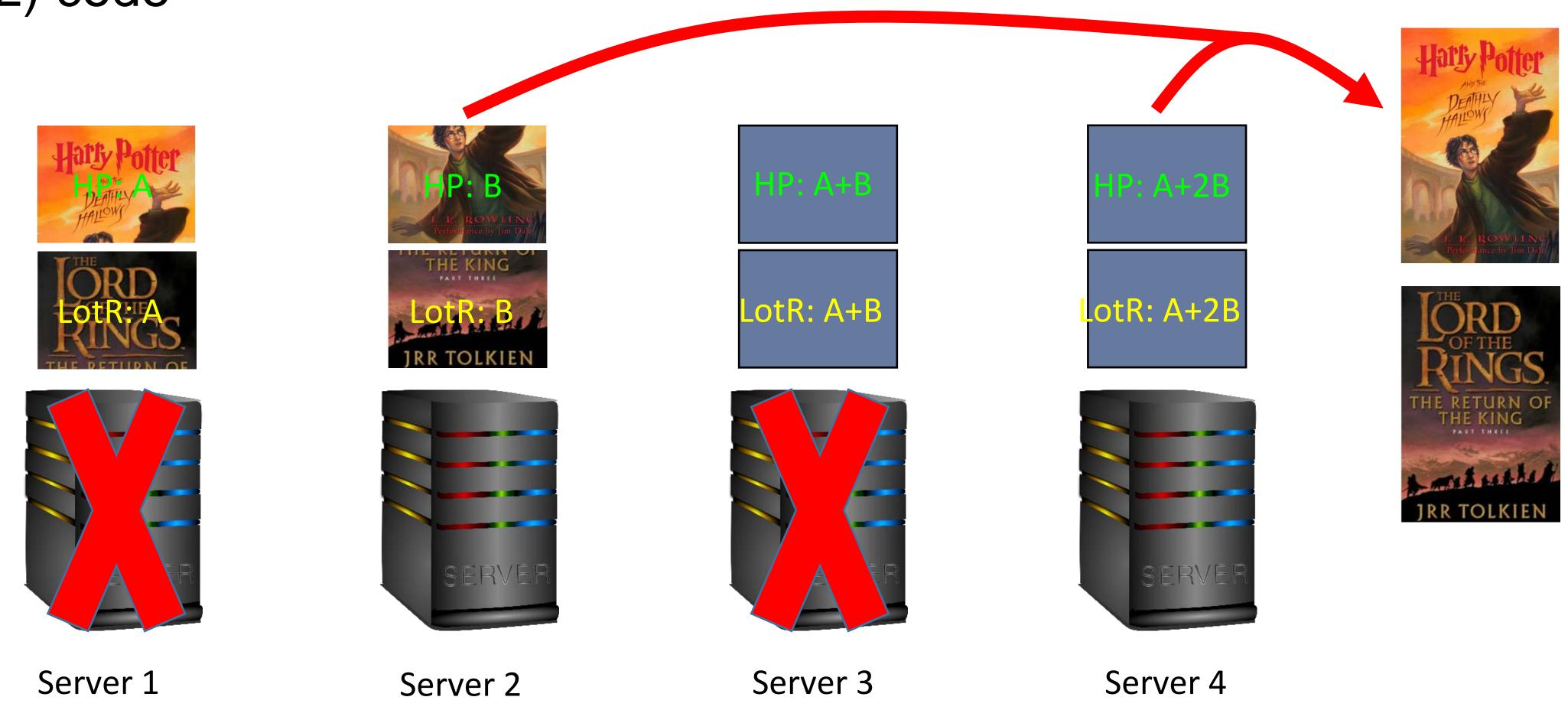
Server 4

Coding: Reduce Storage, Maintain Reliability

• (3,2) code

Coding: Improve Reliability, Maintain Storage

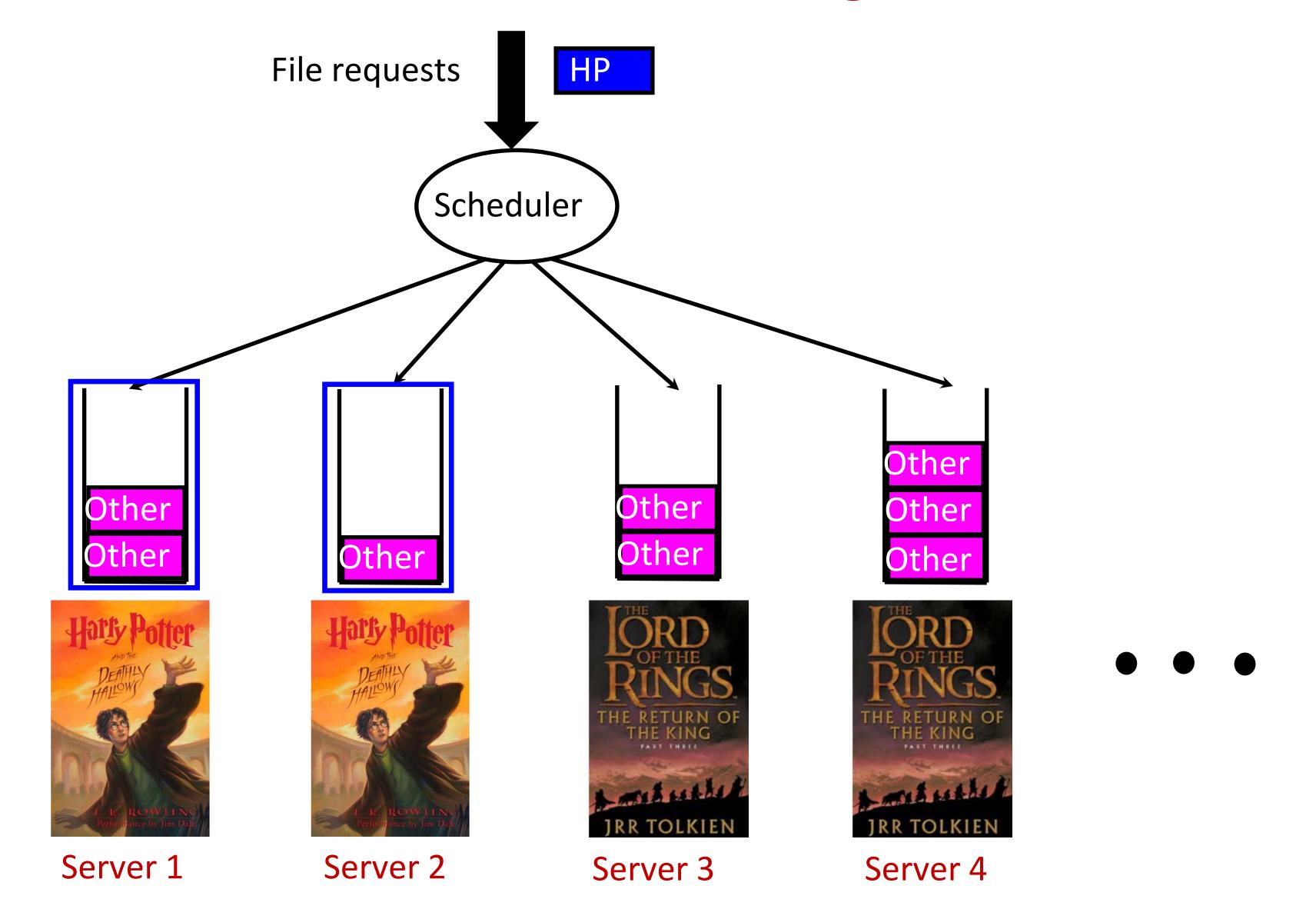
• (4,2) code



Focus on Load Balancing

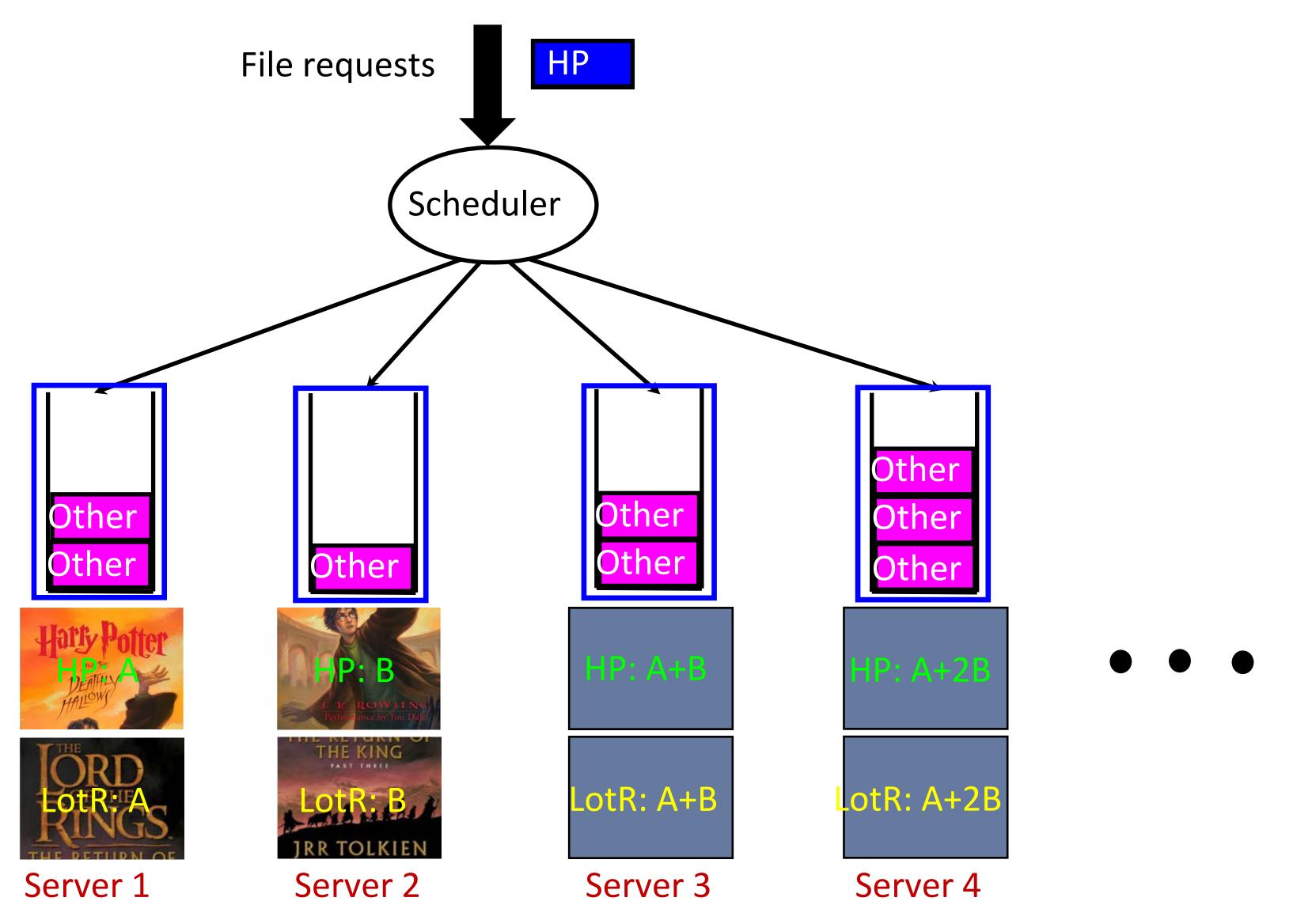
- For the rest of this part, we will not model server failures
 - These will be assumed to occur at a slower timescale than the rate at which files are accessed from the servers
- We will focus on how to exploit redundancy in file storage (through replication or coding) to improve the speed with which we can fetch a file from the servers
 - Using load balancing

Replication and Load Balancing: (2,1) Code



Coding and Load Balancing: (4,2) Code

Need chunks from two servers, but each chunk is half the size of the original photo



In this talk....

- (n,1) code (replication):
 - Each file is replicated at *n* different servers
 - The size of the each copy of the file is 1
- (nk,k) code
 - Each file is encoded into nk chunks and stored in nk different servers
 - The size of each chunk is 1/k
 - Any k out of the nk chunks are sufficient to recover the entire file
 - Total storage space is the same as above

Delay comparison: (n,1) vs. (nk,k) code

- Question: Does the delay improve with coding in the large-system limit (large number of servers, files, arrival rates)?
- "Result" (Li, Ramamoorthy, S., 2016): Under a Poisson arrival/exponential service-time model, the delay decreases by a factor of at least

where H(k) is the k^{th} harmonic number:

$$1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}$$

Very light traffic (zero queues): (2,1) vs. (4,2) code

- File service time is exponentially distributed
- Mean file access delay under (2,1) code (replication):

$$\overline{W}^{(2,1)} = \mathbf{E}[X] \qquad (X \sim \mathrm{Exp}(1))$$
$$= 1$$

Mean file access delay under (4,2) code:

$$\overline{W}^{(4,2)} = \mathbf{E}[\max\{Y_1, Y_2\}]$$
 (Y_1 and Y_2 are i.i.d. with $\exp(2)$)
$$= \frac{3}{4}$$

Compared with replication, delay improves by 25% under coding

Very light traffic (zero queues): (n,1) vs. (nk,k) code

• Mean file access delay under (n,1) code (replication):

$$\overline{W}^{(n,1)} = \mathbf{E}[X] \qquad (X \sim \text{Exp}(1))$$

$$= 1$$

Mean file access delay under (nk,k) code:

$$\overline{W}^{(nk,k)} = \mathbf{E} \left[\max_{i=1,2,\cdots,k} Y_i \right] \quad (Y_i, \forall i, \text{ are i.i.d. with } \mathrm{Exp}(k))$$

$$= \frac{H(k)}{k}$$

General Traffic Case: (n,1) vs. (nk,k) code

- Question: What happens for general arrival rates?
- Answer: in the many-servers limit,
 - In the heavy-traffic regime

$$\lim_{\lambda \uparrow 1} \frac{\overline{W}^{(nk,k)}}{\overline{W}^{(n,1)}} \le \frac{H(k)}{k}$$

Conjecture: in the many-servers limit, for all feasible arrival rates,

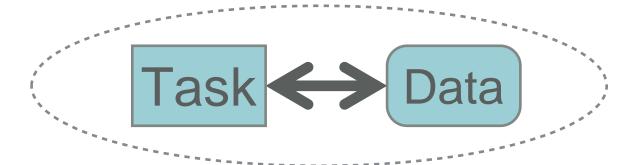
$$\frac{\overline{W}^{(nk,k)}}{\overline{W}^{(n,1)}} \le \frac{H(k)}{k}$$

Outline of Part I

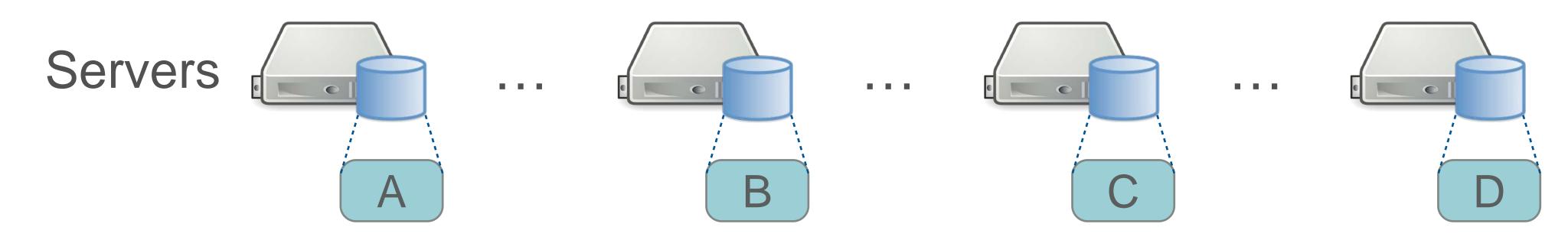
- Load-balancing in large data-storage systems
- Scheduling with Data Locality
- Job vs Task Scheduling
- Minimizing data transfer delay in data center networks

Load-Balancing and Communication

- Each server stores certain data
- Each task is associated with a data chunk

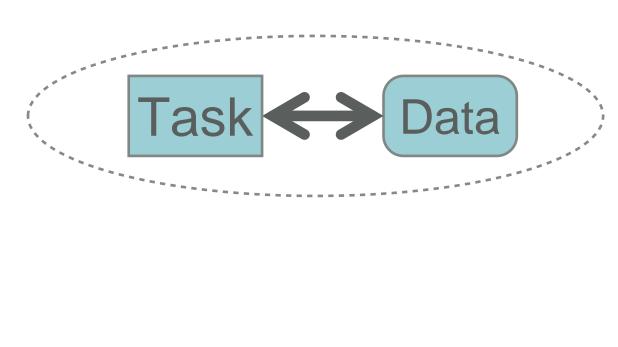


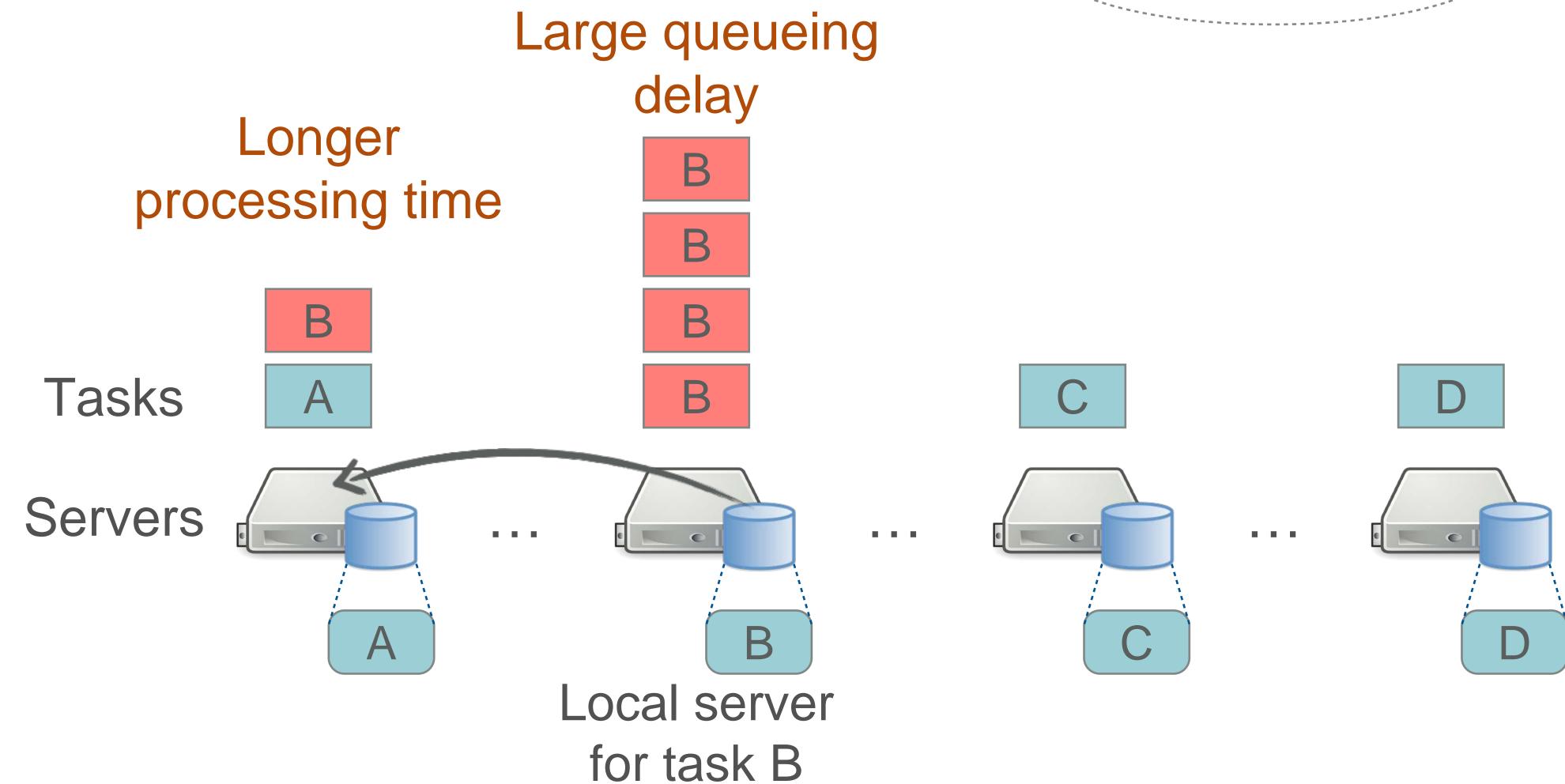
If a task is routed to a server with the required data chunk, then it
executes quickly; otherwise, it has to fetch the data from another server,
thus leading to longer processing times



Load-Balancing and Communication

Each task is associated with a data chunk





Modeling Data Locality

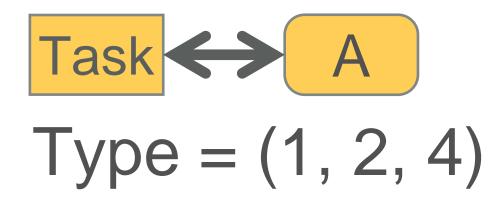
- For the rest of this part, we will not model the dynamics in the network
 - We abstract the network away and assume that

local processing rate > remote processing rate

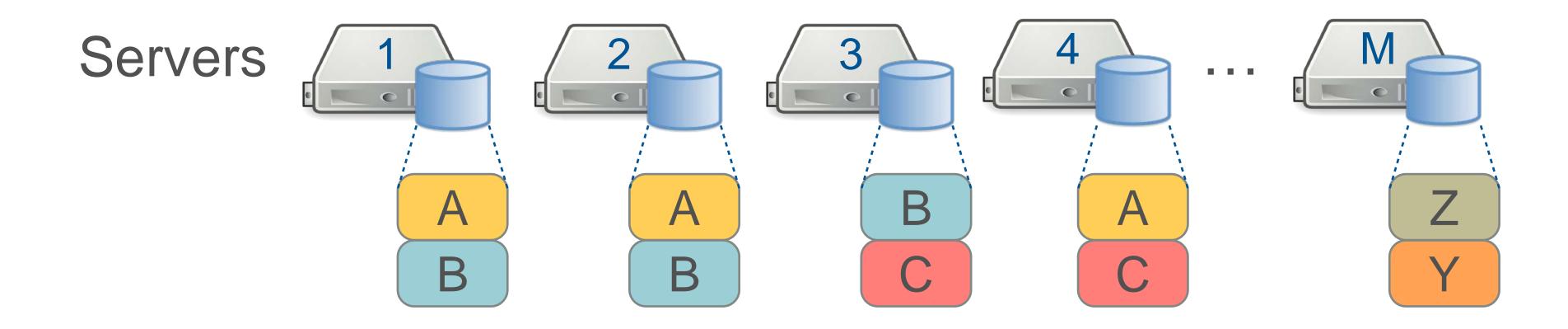
 We will focus on how to strike the right balance between load-balancing and communication to maximize throughput and minimize delay

Task Types

Task type: servers that store its input data (local servers)

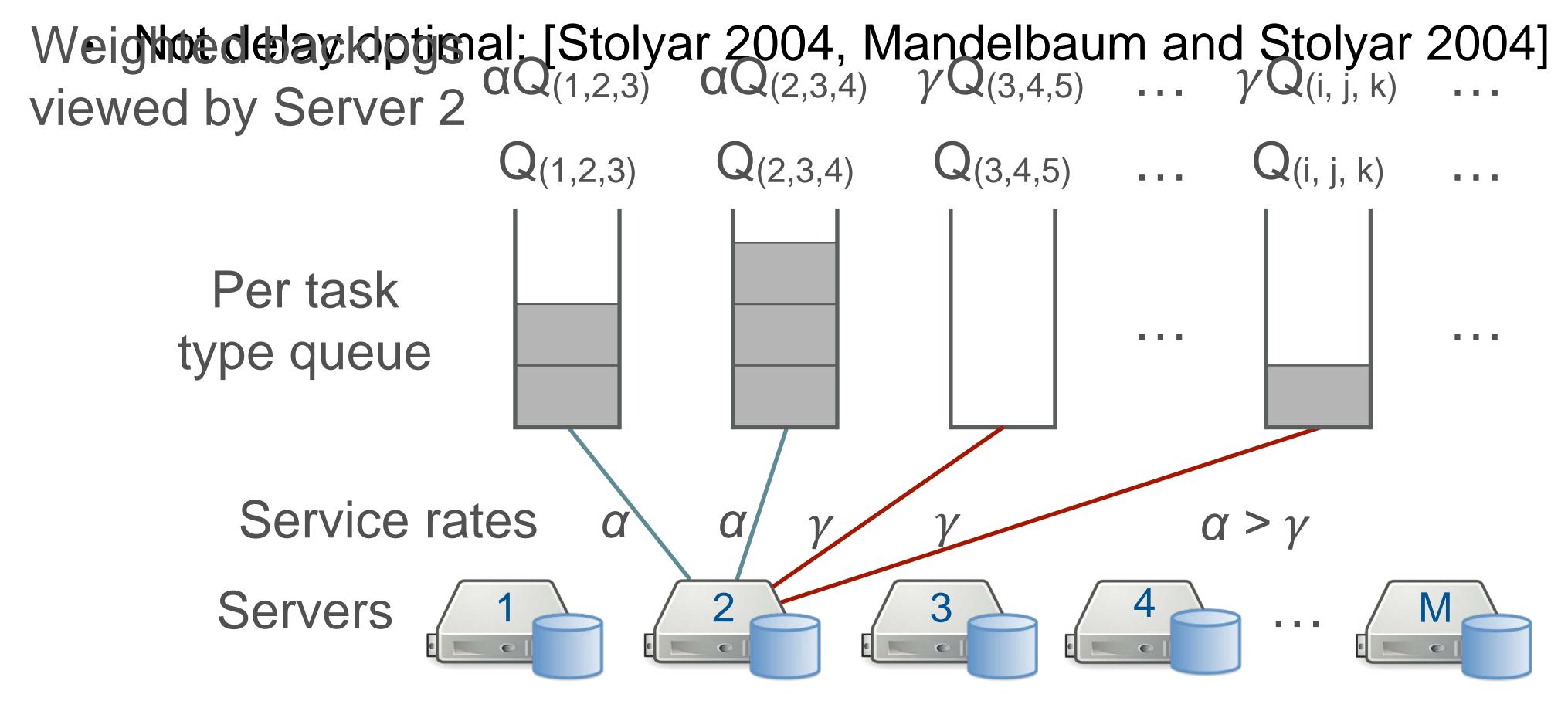


Arrival rates $\lambda_{(1,2,3)}$ $\lambda_{(1,2,4)}$ $\lambda_{(1,2,5)}$... $\lambda_{(i,j,k)}$...



Max Weighted Backlog [Tassiulas and Ephremides 1993]

- Throughput optimal but queue with the maximum weight
 - Too many queues: O(M³) M ~ Tens of thousands



Achieving Delay Optimality under Data Locality

[Wang et al. 2013] M + Task = Type = (1, 2, 4)Irium 11 Join the Shortest Queue Strument of the Shortest Queu Remote Local queues queue Q_2 Q_{M+1} Q_3 Q₄ Weights: αQ₄ νQ_{M+1} Step 2: Tasks from MaxWeight overloaded servers Servers

Performance

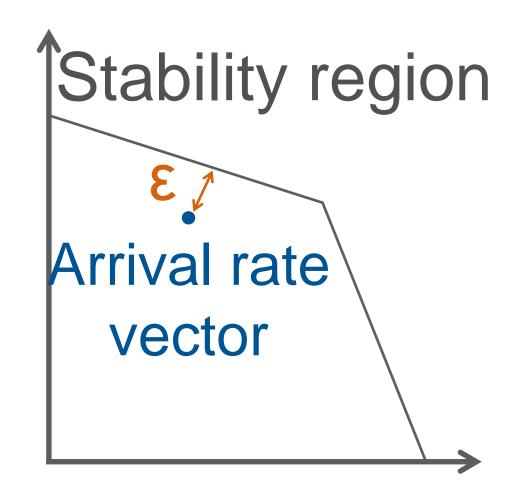
- Maximizes Throughput
- Delay optimality in the following heavy-traffic regime

Peak hours of data centers

Delay Optimality

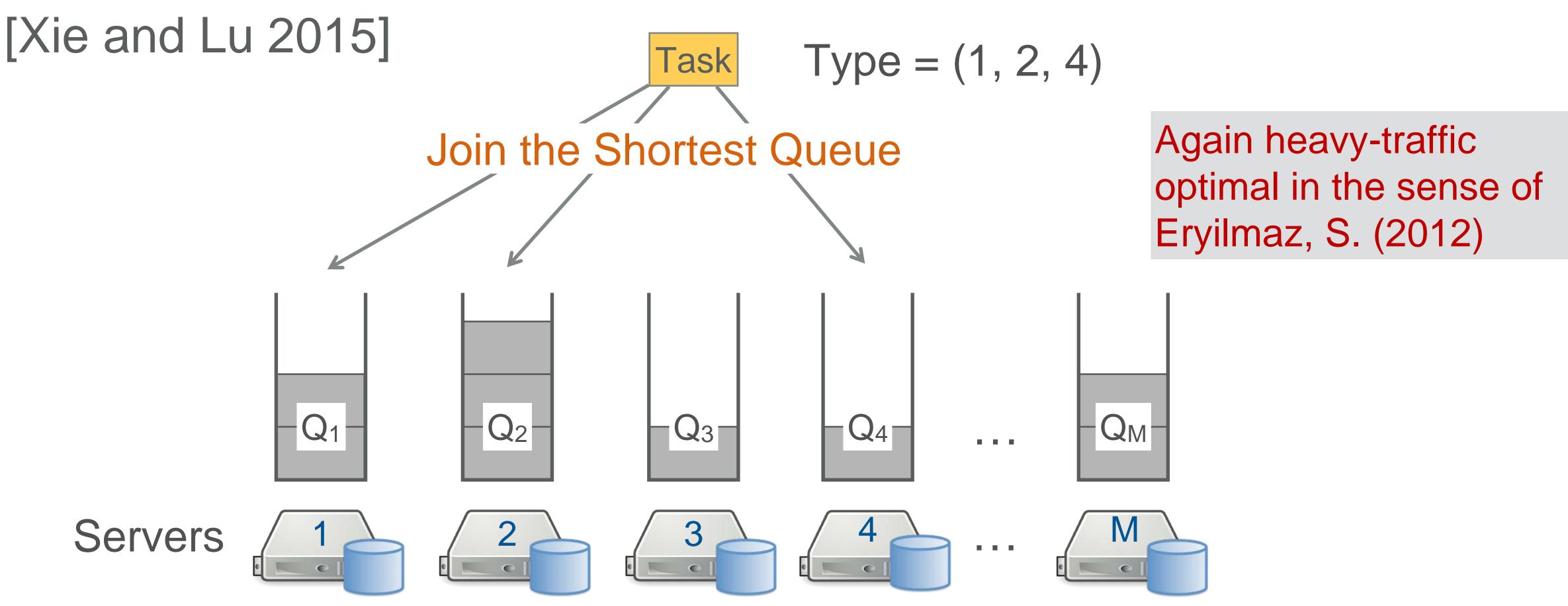
• Total backlog (based on Eryilmaz, S. 2012)

$$\mathbb{E}\left[\sum_{m=1}^{M+1} Q_m^{(\epsilon)}(t)\right] = \frac{\sigma^2 + \nu^2}{2\epsilon} + o\left(\frac{1}{\epsilon}\right)$$



- Coincides with the lower bound where all the servers are pooled together and running on full speed
- Asymptotically minimizes the total backlog
 - By Little's law, it asymptotically minimizes the average task delay

Delay Optimality for All Heavy-Traffic Regime



Prioritized scheduling - Local tasks first

- No local tasks: serve the longest queue

Open Problem

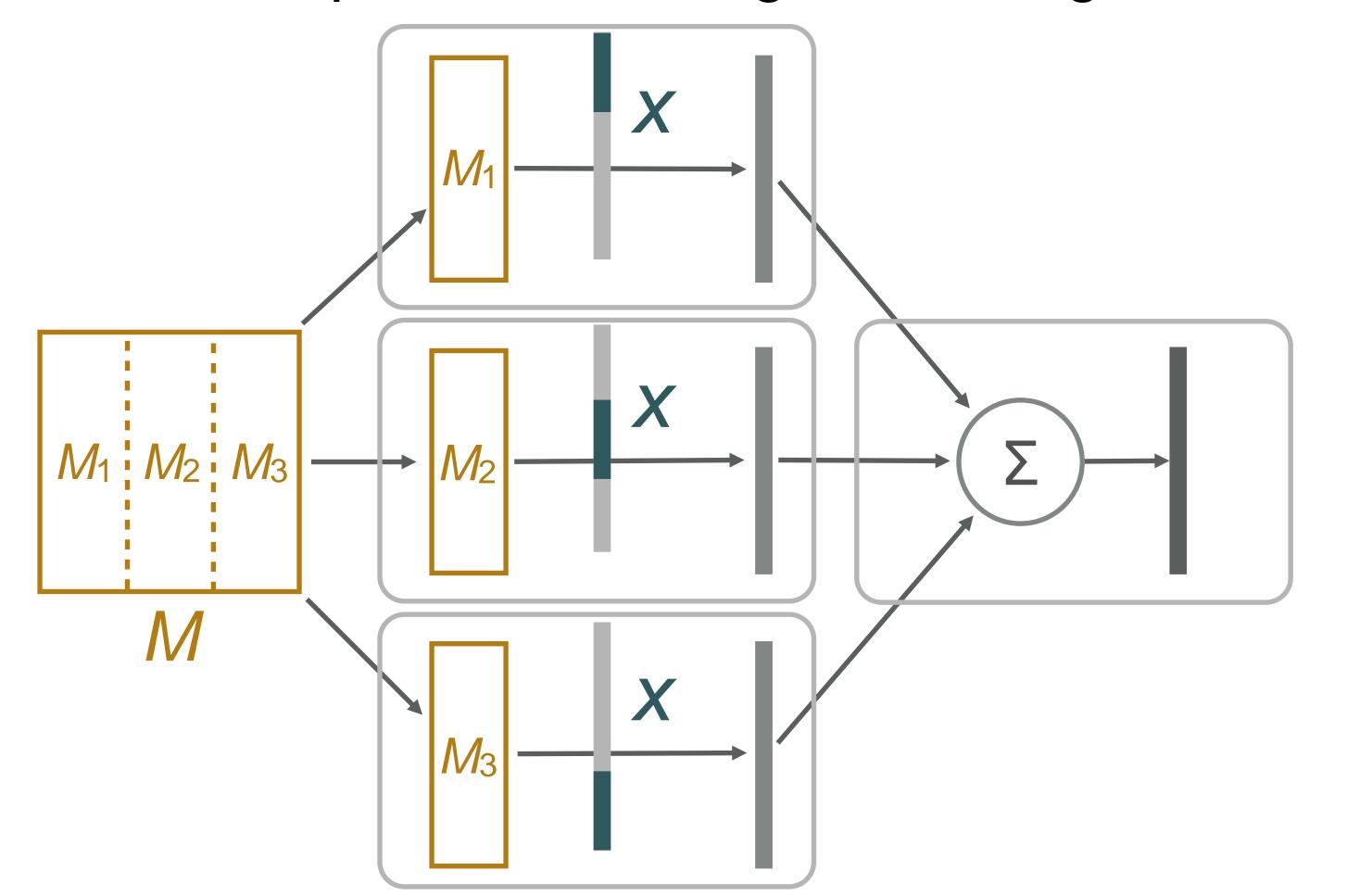
- In our discussion, we considered problems where each job consists of a single task
- Instead, suppose each job consists of multiple tasks, and a job is completed only when all the tasks in the job are completed
- Further each task can be allocated to a different server if needed
- Scheduling algorithms which minimize job delays are unknown
- But near-optimality can be achieved when there is no data locality

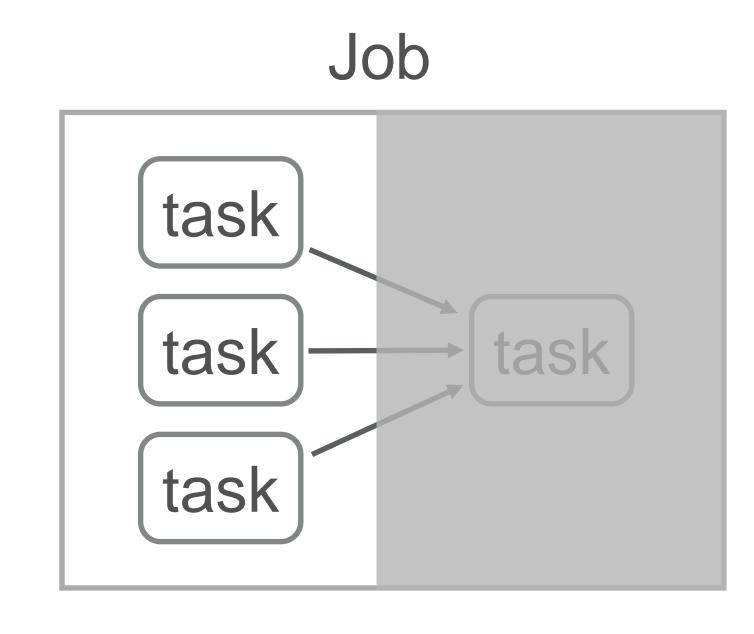
Outline of Part I

- Load-balancing in large data-storage systems
- Scheduling with Data Locality
- Job vs Task Scheduling (with no data locality)
- Minimizing data transfer delay in data center networks

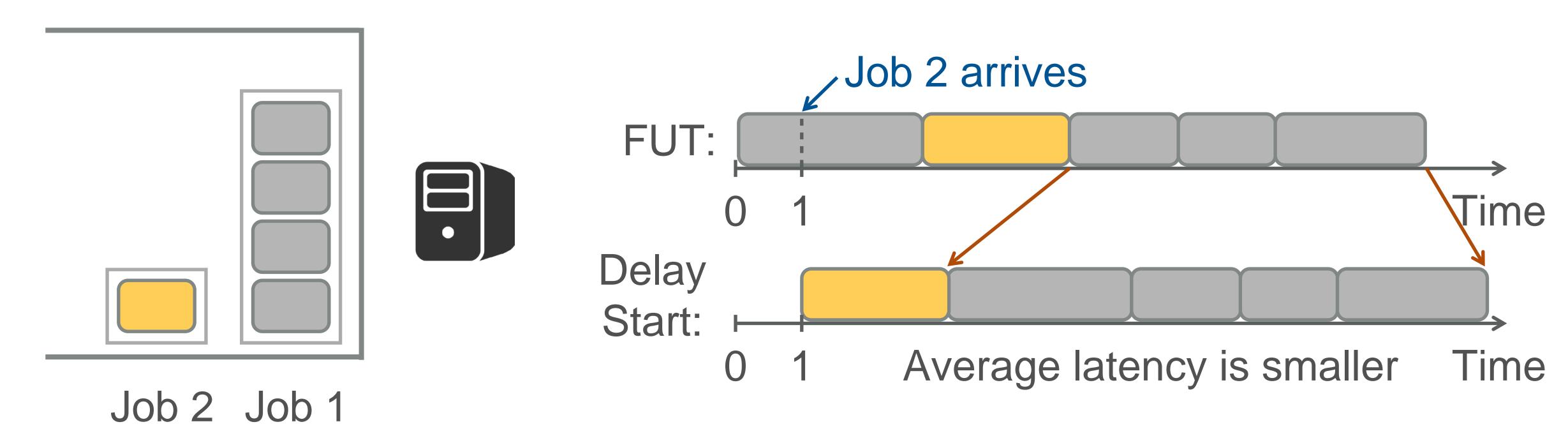
Jobs with Multiple Tasks

- Matrix-vector multiplication: Mx
 - Basic operation for PageRank, regression analysis, ...



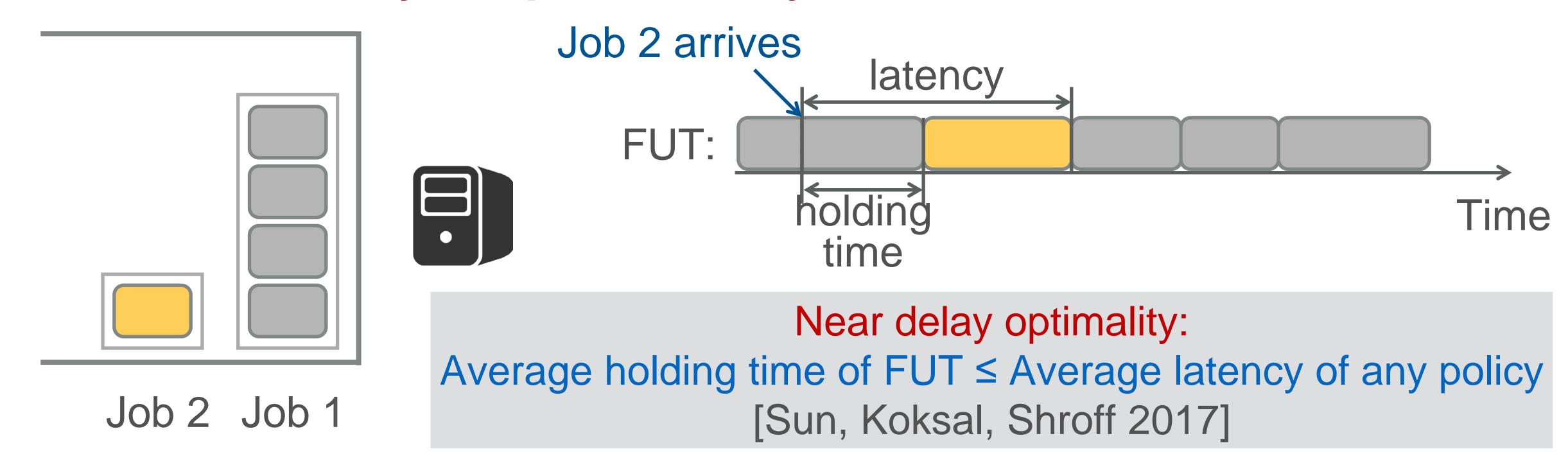


Single-Server System



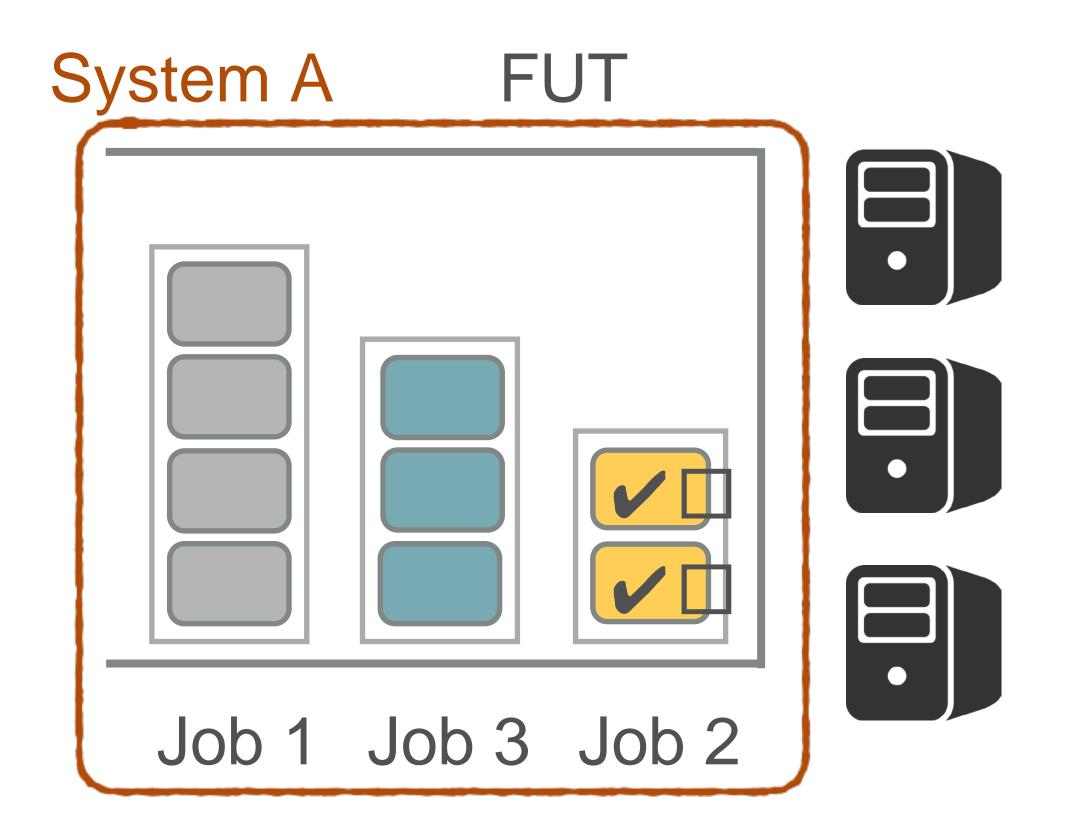
- Fewest-Unassigned-Tasks (FUT) first?
 - Analogy to Shortest-Remaining-Processing-Time (SRPT) policy
 - Not sample-path optimal for jobs with multiple tasks

Near Delay Optimality of FUT

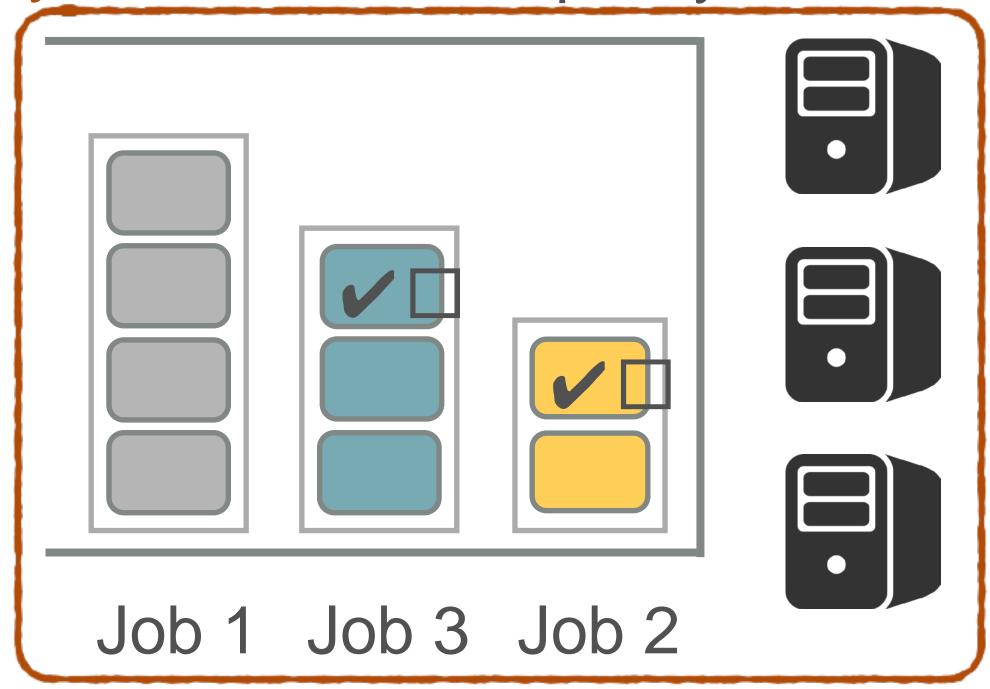


- Holding time of a job: amount of time a job spends in the queue
 - Single server system: latency holding time = service time of one task
 - More generally: latency holding time ≤ Constant

Intuition



System B Another policy



- Average holding time of FUT = average latency of System A
 - Tasks leave System A from the job with the fewest remaining tasks
 - For any [0, t], task departures: System A ≥ System B

Open Problem

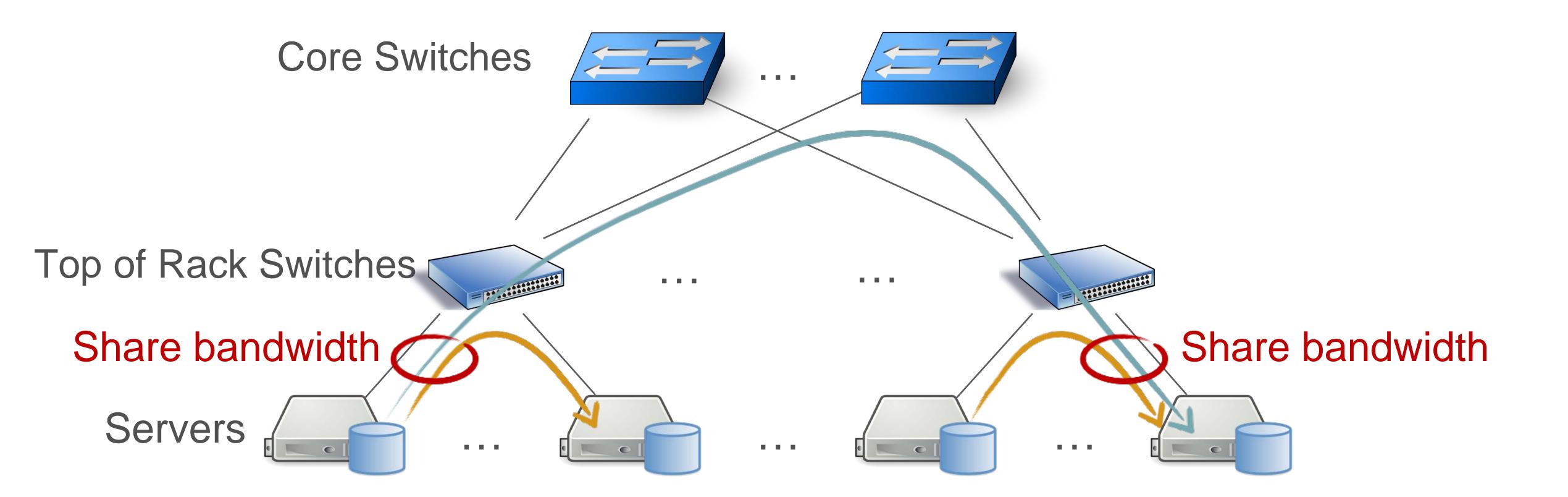
- Back to the matrix multiplication example
- The job consists of not only many tasks, but the tasks have to be executed in multiple stages, i.e., there are precedence constraints
- Delay-optimal or near-optimal scheduling policies for multi-stage, multi-task jobs are unknown
- Data locality and multiple stages???

Outline of Part I

- Load-balancing in large data-storage systems
- Scheduling with Data Locality
- Job vs Task Scheduling
- Minimizing data transfer delay in data center networks

Data Transfer Flows

- How to allocate bandwidth to flows to minimize file transfer delay?
- Links have bandwidth capacities, shared by flows



Resource Allocation

- x_r : rate allocated to a flow on route r
- n_r : # of flows on route r
- C_l : capacity of link l
- Constraints:

$$\sum_{r \ni l} n_r x_r \le C_l, \forall l$$

• Goal: how should we choose $\{x_r\}$ to minimize data transfer delay?

File Transfer Delay

• If a flow on route r arrives at time A_r and has file size F_r , then its delay D_r is determined by the equation:

$$\int_{A_r}^{A_r+D_r} x_r(t) dt = F_r \tag{1}$$

- F_r : random variable
- The choice of $\{x_r\}$ affects the delay D_r through (1)

A Performance Criterion

- Suppose there are N servers in the system
- # of source-destination pairs is $O(N^2)$
- # of links in a data center network is $L \ll N^2$
 - Example: $N^2 \sim 10^8$, $L \sim 10^4$ in a tree structured data center network
- Goal: $\mathbb{E}[\# \text{ of flows}] \sim O(L) \text{ instead of } O(N^2)$

Proportional Fairness

• Choose $\{x_r\}$ to maximize

$$\sum_{r} n_r \log x_r$$

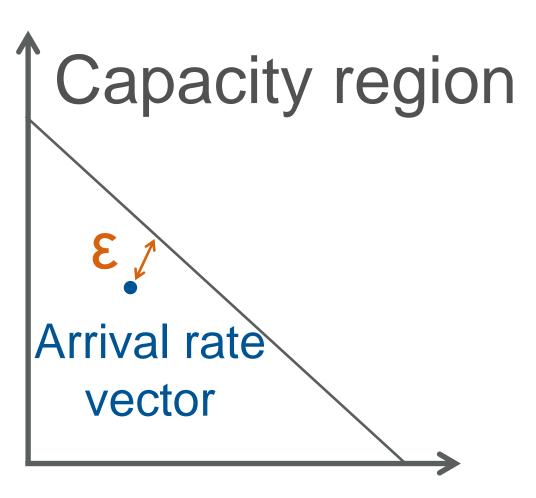
- $\log x_r$: utility of a flow on route r when allocated a rate of x_r
- Subject to resource constraints on each link

Results

Asymptotically tight bounds on total backlog (Kang et al, 2009)

$$\mathbb{E}[\#flows] = \frac{L}{\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

• L: number of saturated links in heavy traffic



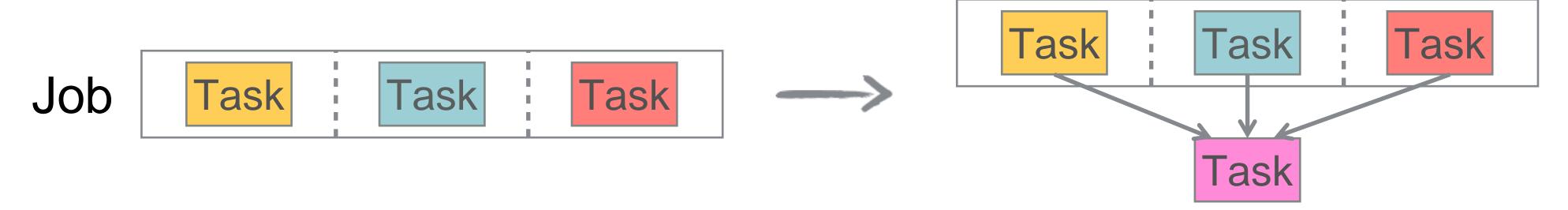
- Insensitivity: the bounds hold for a general class of phase-type distributions for data sizes (Vlasiou et al, 2014)
 - This distribution class can approximate any data size distribution arbitrarily closely

Open Problem

- The file transfers may occur to achieve some other load-balancing goal
 - Such as to fetch remote data at a server in the data locality problem
- Joint resource allocation for data-transfer and load balancing in the presence of data locality to achieve optimal or near-optimal job/task delays is an open problem

Open Problems

- Coding/Replication/Load Balancing Tradeoffs
- Analyzing/minimizing job delay
- Scheduling jobs with multiple stages
 - Dependence among tasks puts constraints on scheduling decisions



Joint design of task scheduling and data transfer

Rest of the Tutorial

- Difficult to analyze most resource allocation schemes exactly
 - There are some exceptions
- Two asymptotic regimes
 - The number of servers is very large (mean-field limit)
 - The traffic load approaches the capacity of the system (heavy-traffic)
- The first regime is perhaps more realistic for data centers
- The second regime often provides insight into why certain policies behave better than others (even in light to moderate traffic)

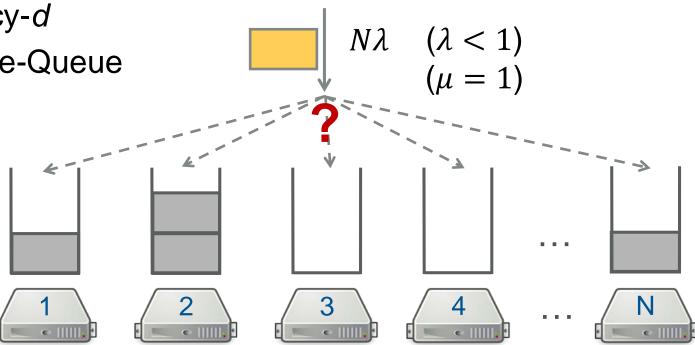
Tutorial on Mean-Field Analysis

R. Srikant and Weina Wang University of Illinois at Urbana-Champaign

Load Balancing

- Join-the-Shortest-Queue
- Random Routing
- Power-of-d-Choices
- Batch-filling
- Redundancy-d
- Join-the-Idle-Queue

Arrival process is Poisson(N λ) Service times are exp(1)

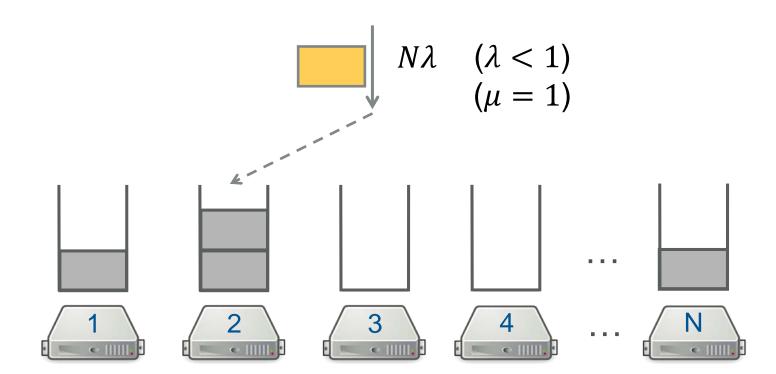


Random Routing

- Route an arrival to a queue uniformly at random
- N separate M/M/1 queues with load [↑]
- Queue length:

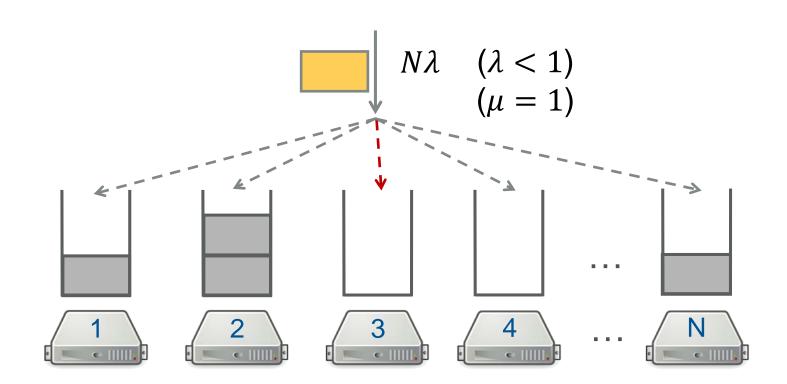
$$\Pr(Q \ge i) = \lambda^i$$

Can we do better?



Join-the-Shortest-Queue

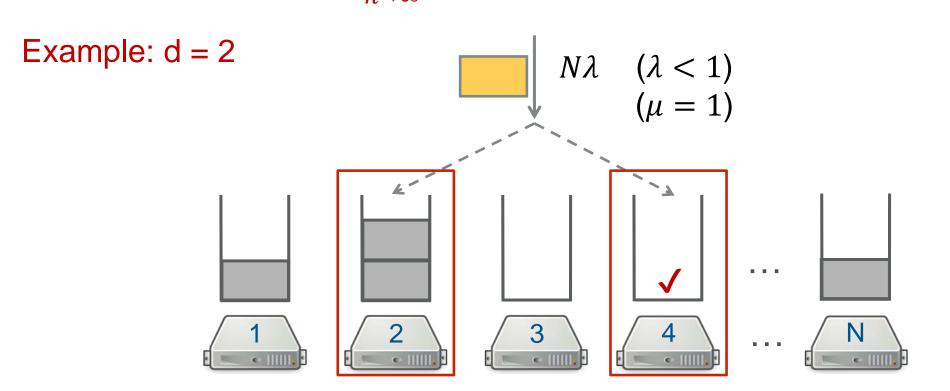
- Each arrival joins the shortest queue among all the N queues
- Minimizes average delay
- Requires information about all queues: large overhead



Power-of-d-Choices

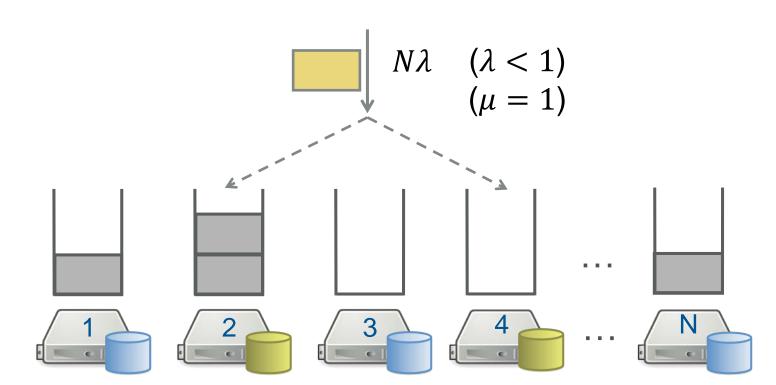
- Each arrival picks d queues at random and joins the shortest one
- Queue length:

$$\lim_{n\to\infty} \Pr(Q \ge i) = \lambda^{\frac{d^{i}-1}{d-1}} \quad \text{doubly exponential}$$



Equivalent model: Simple Load-Balancing for Data Locality

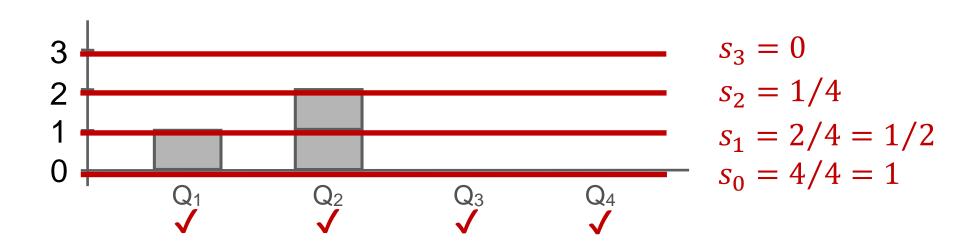
- Each data chunk is in 2 servers: $\binom{N}{2}$ places where a data chunk can be
- Arrival checks the servers that have its data and joins the shortest one
- Equivalent to the Power-of-2-Choices



State Representation

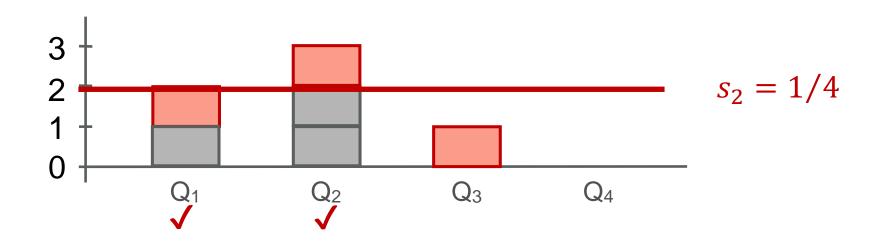
- Queue length vector: $Q = (Q_1, Q_2, Q_3, Q_4) = (1, 2, 0, 0)$
- Equivalent representation:

 $s_i(t)$: fraction of queues with at least i tasks at time t



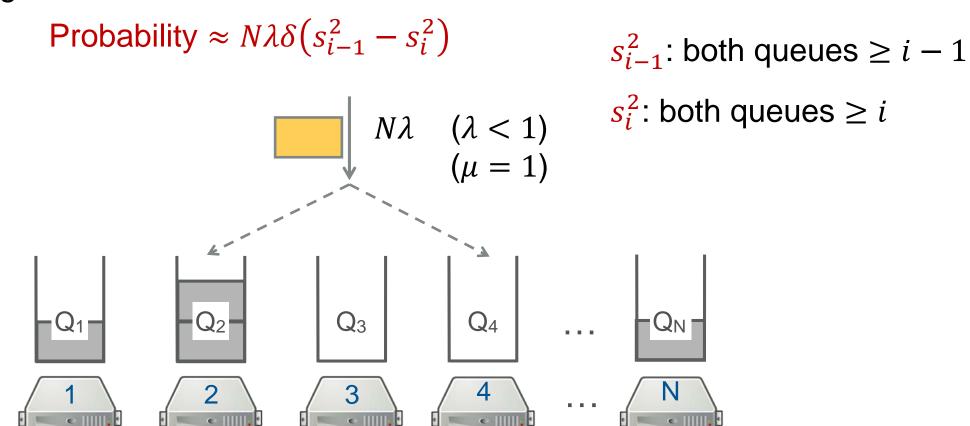
Dynamics

- $s_i(t)$: fraction of queues with at least i tasks at time t
- When does s_i change?
 - s_i does not change when a task arrives to queue with < i 1 tasks or $\ge i$ tasks
 - $s_i \rightarrow s_i + 1/N$ when a task arrives to a queue with i-1 tasks
 - s_i does not change when a task departures from queue with < i tasks or $\ge i + 1$ tasks
 - $s_i \rightarrow s_i 1/N$ when a tasks departs from a queue with i tasks



Power-of-2-Choices: Arrivals

- $s_i(t + \delta) = s_i + 1/N$ when a task arrives to a queue with i 1 tasks
- Happens when an arrival chooses two queues where the shorter one has i-1 tasks



Power-of-2-Choices: Departures

- $s_i(t + \delta) = s_i 1/N$ when a tasks departs from a queue with i tasks
- # queue with i tasks = $N(s_i s_{i+1})$
- Probability $\approx N(s_i s_{i+1})\delta$

Mean-Field Analysis

• Drift: $\mathbb{E}\left[\frac{s_i(t+\delta) - s_i(t)}{\delta} \middle| s\right] = \frac{1}{\delta} \left(\frac{1}{N} N \lambda \delta(s_{i-1}^2 - s_i^2) - \frac{1}{N} N(s_i - s_{i+1}) \delta\right)$ $= \lambda(s_{i-1}^2 - s_i^2) - (s_i - s_{i+1})$

Mean field approximation:

as
$$n \to \infty$$
 (not proved here) ation:
$$\frac{ds_i}{dt} = \lambda \left(s_{i-1}^2 - s_i^2 \right) - \left(s_i - s_{i+1} \right)$$

 Use the fixed point of this set of differential equations as an approximation for the original system

Solving for the Fixed Point

$$\frac{ds_i}{dt} = \lambda (s_{i-1}^2 - s_i^2) - (s_i - s_{i+1})$$

- Fixed point:
- Sufficient condition

$$\lambda (s_{i-1}^2 - s_i^2) = (s_i - s_{i+1})$$

$$\lambda s_i^2 = s_{i+1}, i = 1, 2, \dots$$

Solution:

- $s_i = \lambda^{2^i 1}, i = 1, 2, ...$
- Queue length probability decreases double exponentially
- Uniqueness (not proved here)

Steps Involved in the MFA

- Change the state description in terms of fractions of queues with at least a certain queue length
- Compute

$$\lim_{\delta \to 0} E\left(\frac{s_i(t+\delta) - s_i(t)}{\delta} | s_i(t) = s_i\right)$$

- Use the above as an approximation to $\dot{s_i}$
- Study the differential equations

Power-of-d-Choices

- Arrival: $s_i(t + \delta) = s_i + 1/N$ when a task arrives to a queue with i 1 tasks

 Probability $\approx N\lambda\delta(s_{i-1}^d s_i^d)$
- Departure: same as power-of-2-choices
- Drift:

$$\mathbb{E}\left[\frac{s_i(t+\delta) - s_i(t)}{\delta} \middle| s\right] = \frac{1}{\delta} \left(\frac{1}{N} N \lambda \delta \left(s_{i-1}^d - s_i^d\right) - \frac{1}{N} N (s_i - s_{i+1}) \delta\right)$$

$$= \lambda \left(s_{i-1}^d - s_i^d\right) - (s_i - s_{i+1})$$
as $n \to \infty$ (need to prove)

arrival

departure

Mean field analysis

$$\frac{ds_i}{dt} = \lambda (s_{i-1}^d - s_i^d) - (s_i - s_{i+1})$$

Power-of-d-Choices: Fixed Point

$$\frac{ds_i}{dt} = \lambda \left(s_{i-1}^{\mathbf{d}} - s_i^{\mathbf{d}} \right) - \left(s_i - s_{i+1} \right)$$

• Fixed point:
$$\lambda (s_{i-1}^d - s_i^d) - (s_i - s_{i+1}) = 0$$

Sufficient condition

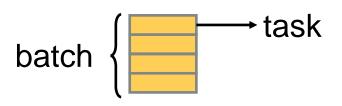
$$\lambda s_i^d = s_{i+1}, i = 1, 2, \dots$$

Solution:

$$s_i = \lambda^{\frac{d^i - 1}{d - 1}}, i = 1, 2, \dots$$

Batch-Filling

- Batch arrivals: each batch has m tasks
- Poisson batch arrivals with rate $N\lambda/m$
 - Total task arrival rate is still Nλ
- Each batch arrival checks md queues
- *d*: probe ratio

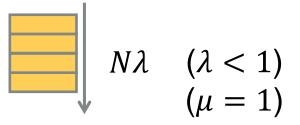


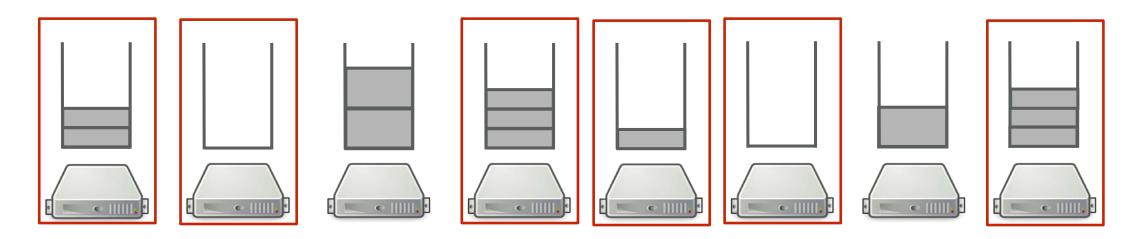
Batch-Filling

Waterfilling:

- Fill the smallest queue until it equals the second smallest queue
- Then fill these until they become equal to the third smallest queue, and so on...

Example: m=4, d=1.5





Batch-Filling

Queue length:

$$\lim_{n\to\infty} \Pr(Q=i) = \begin{cases} 1-\lambda & i=0,\\ (1-\lambda)\lambda d(1+\lambda d)^{i-1} & 1\leq i\leq \bar{Q}-1,\\ 1-(1-\lambda)d(1+\lambda d)^{\bar{Q}-1} & i=\bar{Q},\\ 0 & otherwise, \end{cases}$$

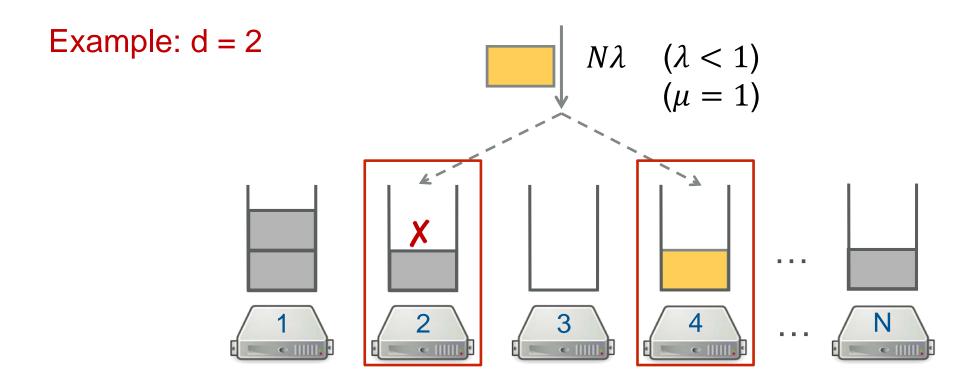
where

$$\bar{Q} = \left[\frac{\log\left(\frac{1}{1-\lambda}\right)}{\log(1+\lambda d)} \right]$$

Finite queue length

Redundancy-d

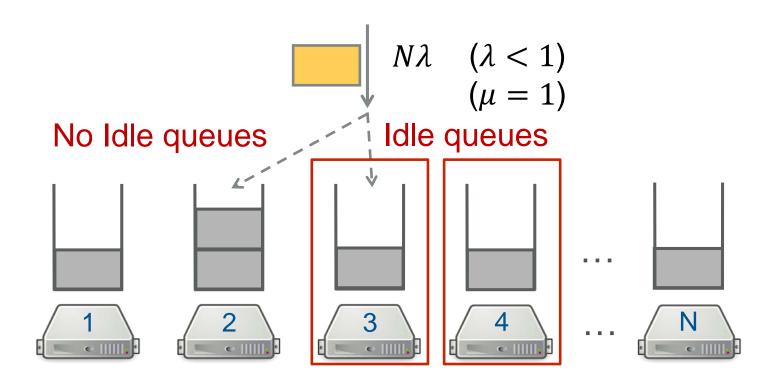
- Each arrival makes copies at d servers chosen at random
- The other copies are killed once one copy is completed
- Harder to analyze



Join-the-Idle-Queue

- An arrival is routed to one of the idle servers at random if there is any; if not, the arrival is routed to a server at random
- Queue length:

$$\lim_{n\to\infty} \Pr(Q \ge i) = 0, \qquad i \ge 2$$



Incomplete List of References

- PoD: Vvedenskaya, Dobrushin, Karpelevich (1996), Mitzenmacher (1996)
- Batch: Ying, S., Kang (2015, 2017)
- JIQ: Lu et al (2011), Stolyar (2015,...)
- Redundancy: Gardner et al (2015,...)
- Many other scaling regimes: Borst SIGMETRICS 2017 Talk

Heavy-Traffic Analysis for Discrete-Time Systems

R. Srikant and Weina Wang University of Illinois at Urbana-Champaign

Outline

- Kingman Bound for a Single Queue
- Join-the-Shortest-Queue (JSQ) Routing Policy (Eryilmaz, S., 2012)
- JSQ-MaxWeight for Scheduling with Data Locality (Wang et al, 2013)

Kingman Bound for a Single Queue

Single Queue

- q(k+1) = q(k) + a(k) s(k) + u(k)
 - a(k): # arrivals
 - s(k): # potential departures
 - u(k): unused service
- Want to bound $\mathbb{E}[q(k)]$ in steady state
- Set the drift of Lyapunov function $V(q) = q^2$ to zero:

$$\mathbb{E}[q^2(k+1)] - \mathbb{E}[q^2(k)] = 0$$

Drift equation:

$$q^{2}(k+1) - q^{2}(k)$$

$$= 2q(k)(a(k) - s(k)) + (a(k) - s(k))^{2}$$

$$+2u(k)(q(k) + a(k) - s(k) + u(k)) - u^{2}(k)$$

Drift Equation

$$q^{2}(k+1) - q^{2}(k)$$

$$= 2q(k)(a(k) - s(k)) + (a(k) - s(k))^{2}$$

$$+2u(k)(q(k) + a(k) - s(k) + u(k)) - u^{2}(k)$$

•
$$\left[\mathbb{E}[q(k)(a(k) - s(k))] = (\lambda - \mu)\mathbb{E}[q(k)]\right]$$

•
$$\left[\mathbb{E}\left[\left(a(k)-s(k)\right)^2\right] \to \sigma^2 \text{ as } \lambda \to \mu$$

$$q(k + 1) = q(k) + a(k) - s(k) + u(k)$$

In each time slot *k*,

a(k): # arrivals

s(k): # potential departures

u(k): unused service

Drift Equation (cont'd)

$$q^{2}(k+1) - q^{2}(k)$$

$$= 2q(k)(a(k) - s(k)) + (a(k) - s(k))^{2} + 2u(k)(q(k) + a(k) - s(k) + u(k)) - u^{2}(k)$$

•
$$q(k+1)u(k) = 0 \quad \forall k$$

•
$$\mathbb{E}[u^2(k)] \le s_{\max}(\mu - \lambda)$$
 since

$$u^2(k) \le s_{\max} u(k)$$
, and

$$\mathbb{E}[q(k+1)] = \mathbb{E}[q(k)] \Rightarrow \mathbb{E}[a(k) - s(k) + u(k)] = 0 \Rightarrow \mathbb{E}[u(k)] = \mu - \lambda$$

$$\lambda \longrightarrow \mu$$

$$q(k + 1) = q(k) + a(k) - s(k) + u(k)$$

In each time slot *k*,

a(k): # arrivals

s(k): # potential departures

u(k): unused service

Kingman Bound

$$q^{2}(k+1) - q^{2}(k)$$

$$= 2q(k)(a(k) - s(k)) + (a(k) - s(k))^{2}$$

$$+2u(k)(q(k) + a(k) - s(k) + u(k)) - u^{2}(k)$$

• $\mathbb{E}[q^2(k+1)] - \mathbb{E}[q^2(k)] = 0$ in steady state yields

$$\lambda \longrightarrow \mu$$

$$q(k + 1) = q(k) + a(k) - s(k) + u(k)$$

In each time slot k,

a(k): # arrivals

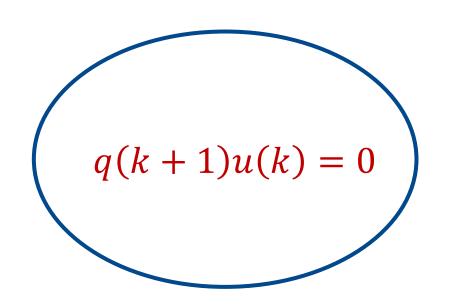
s(k): # potential departures

u(k): unused service

$$\mathbb{E}[q] = \frac{\mathbb{E}[(a-s)^2]}{2(\mu-\lambda)} + \boxed{o\left(\frac{1}{\mu-\lambda}\right)}$$

This term is small compared to the first term when $\lambda \rightarrow \mu$

Key Fact about Unused Service

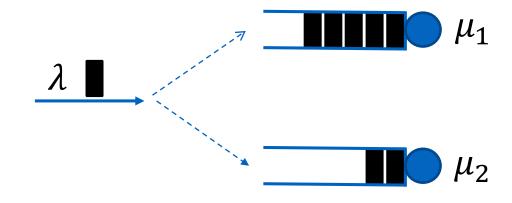


Join-the-Shortest-Queue (JSQ) Routing Policy

 $(q_1(k+1) + q_2(k+1))u_1(k) \approx 0$

JSQ

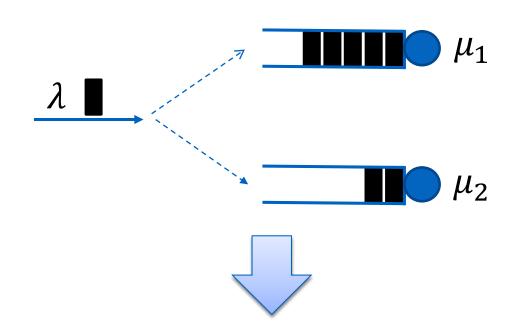
- Discrete-time model
- Route packet arrivals in each time slot to the shorter of the two queues, breaking ties at random
- Well known that JSQ is heavy-traffic optimal; will derive this result using the Kingman-type drift argument



Universal Lower Bound: Resource Pooling

- For any routing policy, $q_1 + q_2$ is lower bounded by the queue length in the system where the service resource is pooled together
- Heavy-traffic parameter $\epsilon = \mu_1 + \mu_2 \lambda$
- By the Kingman bound for the single queue system,

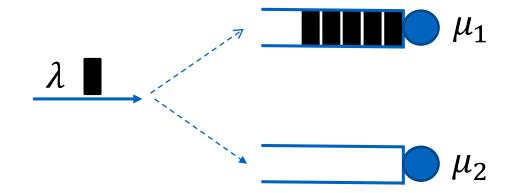
$$\mathbb{E}[q_1 + q_2] \ge \frac{\mathbb{E}[(a - s)^2]}{2\epsilon} + o\left(\frac{1}{\epsilon}\right)$$



Lower bounding system

JSQ: What can go wrong?

- Because of the inherent randomness in the service times, one queue can become empty when the other is not
- This means that one server is idling (i.e., can have unused service) when it can be doing work
- However, in heavy traffic, this should happen rarely under the join-theshortest queue policy



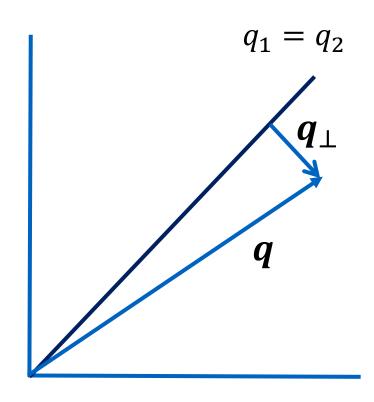
State-Space Collapse

- For the servers to avoid unnecessarily idling we need to show $q_1 \approx q_2$ under JSQ
- What we actually prove is that

$$\mathbb{E}[\|q_\perp\|^2] \leq M,$$

where M does not depend on the heavy-traffic parameter $\epsilon = \mu_1 + \mu_2 - \lambda$

• This is called state-space collapse because this means q_{\perp} is small compared to q_1+q_2 which is $O\left(\frac{1}{\epsilon}\right)$ in expectation (why?)



Upper Bound for JSQ

• Set the drift of $V(q) = (\sum_{l} q_{l})^{2}$ equal to zero:

$$\mathbb{E}[V(q(k+1))] - \mathbb{E}[V(q(k))] = 0$$

- Why this choice of V(q)?
 - From the state-space collapse result, we expect the queues to behave like a single queue
 as in the lower bound; all queues are roughly equal, so they would all hit zero
 "simultaneously"
 - So we expect $\sum_{l} q_{l}$ to behave like a single-server queue

Drift Equation

 The terms in the drift equation look very similar to the lower bound, except for the red term below:

$$(q_1(k+1) + q_2(k+1))^2 - (q_1(k) + q_2(k))^2$$

$$= 2(q_1(k) + q_2(k))(a_1(k) + a_2(k) - s_1(k) - s_2(k))$$

$$+ (a_1(k) + a_2(k) - s_1(k) - s_2(k))^2$$

$$+ 2(u_1(k) + u_2(k))(q_1(k+1) + q_2(k+1))$$

$$- (u_1(k) + u_2(k))^2$$

Lower bounding system:

$$q^{2}(k+1) - q^{2}(k)$$

$$= 2q(k)(a(k) - s(k)) + (a(k) - s(k))^{2}$$

$$+2u(k)q(k+1) - u^{2}(k)$$

Using State-Space Collapse

 The terms in the drift equation look very similar to the lower bound, except for terms of the form:

$$(q_1(k+1) + q_2(k+1))(u_1(k) + u_2(k))$$

- Note that $q_1(k+1)u_1(k) = 0$, but $q_2(k+1)u_1(k) \neq 0$
- But, from state-space collapse, $q_1(k+1) \approx q_2(k+1)$, and thus,

$$q_2(k+1)u_1(k) \approx 0$$

Upper Bound for JSQ

• $\mathbb{E}[V(q(k+1))] - \mathbb{E}[V(q(k))] = 0$ in steady state yields

$$\mathbb{E}\left[\left(q_{1}(k+1) + q_{2}(k+1)\right)^{2} - \left(q_{1}(k) + q_{2}(k)\right)^{2}\right] \qquad 0$$

$$= \mathbb{E}\left[2\left(q_{1}(k) + q_{2}(k)\right)\left(a_{1}(k) + a_{2}(k) - s_{1}(k) - s_{2}(k)\right)\right] \qquad -2\epsilon\mathbb{E}\left[q_{1} + q_{2}\right]$$

$$+ \mathbb{E}\left[\left(a_{1}(k) + a_{2}(k) - s_{1}(k) - s_{2}(k)\right)^{2}\right] \qquad \mathbb{E}\left[(a - s)^{2}\right]$$

$$+ \mathbb{E}\left[2\left(u_{1}(k) + u_{2}(k)\right)\left(q_{1}(k+1) + q_{2}(k+1)\right)\right] \qquad o(1)$$

$$- \mathbb{E}\left[\left(u_{1}(k) + u_{2}(k)\right)^{2}\right] \qquad o(1)$$

Thus,

$$\mathbb{E}[q_1 + q_2] = \frac{\mathbb{E}[(a-s)^2]}{2\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

Heavy-Traffic Delay Optimality

Under JSQ,

$$\mathbb{E}[q_1 + q_2] = \frac{\mathbb{E}[(a - s)^2]}{2\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

This coincides with the lower bound for any policy

$$\mathbb{E}[q_1 + q_2] \ge \frac{\mathbb{E}[(a - s)^2]}{2\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

- JSQ asymptotically minimizes the backlog in heavy traffic
- By Little's law, JSQ asymptotically minimizes the average delay in heavy traffic

Key Steps

- Lower Bound
 - Resource Pooling

- Establish State-Space Collapse
 - Using insight about why the algorithm might achieve the lower bound
 - We haven't yet discussed how to show state-space collapse

- Obtain an Upper Bound
 - Again using the insight from the lower bound and the state-space collapse to choose an appropriate function whose drift is equal to zero

State-Space Collapse

(Hajek, 1982)

X is Markov chain, V(x) is some function (satisfying a certain condition) defined over the state-space of the Markov chain. If

$$E(V(X_{k+1}) - V(x)|X_k = x) \le -\delta,$$

for $V(x) \ge B$, then

$$\lim_{k\to\infty} E(e^{\theta V(X_k)}) \le M_{\delta}$$

A Useful Property of JSQ

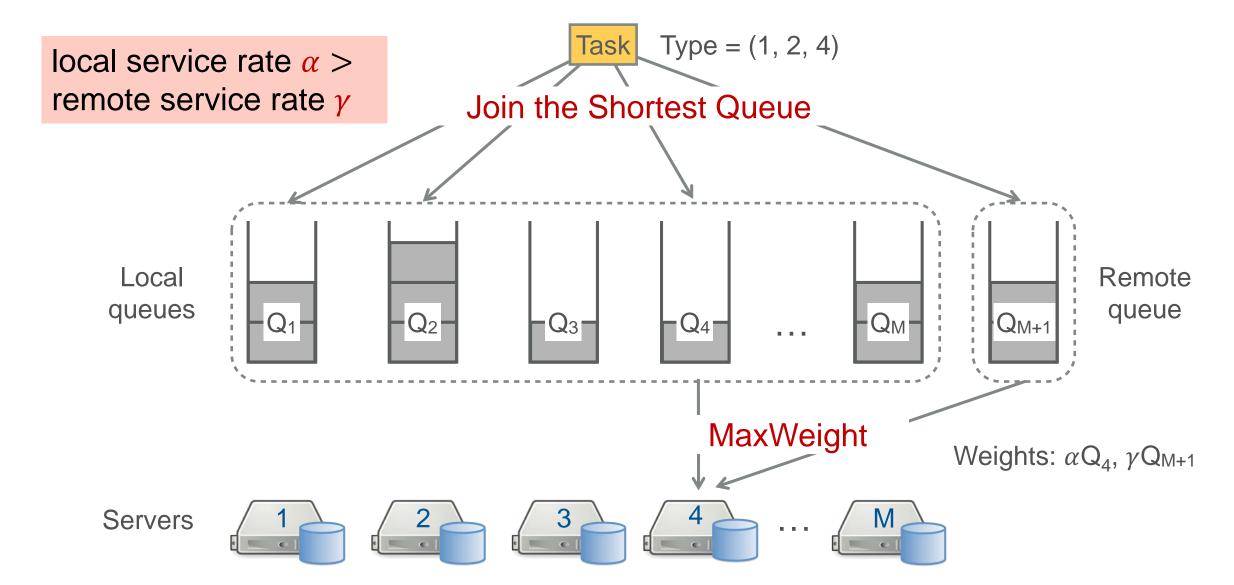
- Define $W(q) = ||q_{\perp}||$
- In the 2-d case, $W(q) = \frac{1}{\sqrt{2}} |q_1 q_2|$
- Drift: $\mathbb{E}[W(q(k+1)) W(q(k)) | q(k) = q]$
- JSQ:
 - If $q_1 > q_2$, then q_1 decreases and q_2 increases, independent of ε
 - Similarly when $q_2 > q_1$
 - Conclusion: Drift is independent of ε

Moments & State-Space Collapse

- $E[W(q(k+1)) W(q(k))|q(k) = q] \le -\delta$, independent of the heavy-traffic parameter ϵ
- Following Hajek (1982), this implies the following steady-state estimate: $E(\|\mathbf{q}_{\perp}\|) \leq M$, independent of ϵ
- State-space collapse: Recall that $E(\sum_l q_l)$ is $\Omega\left(\frac{1}{\epsilon}\right)$; thus q_\perp is small compared to q in heavy-traffic

JSQ-MaxWeight for Scheduling with Data Locality

JSQ-MaxWeight



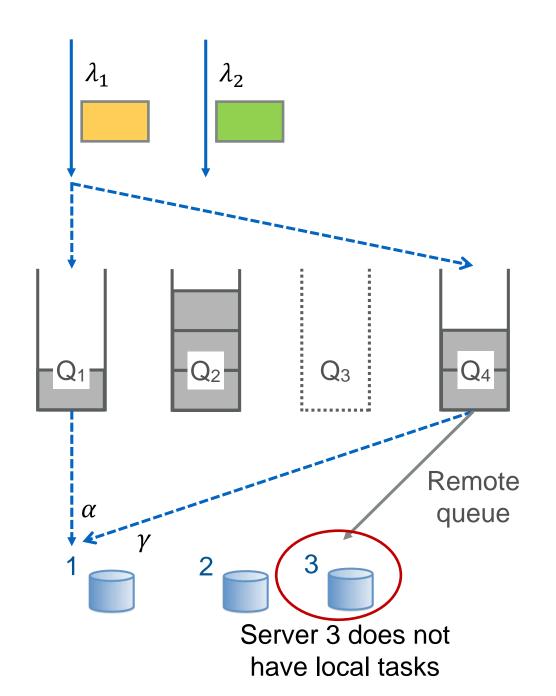
Heavy-Traffic Regime

- Some servers do not store data, so they do not have local tasks
 - Backup servers for peak hours
- Servers with data are overloaded

Example

- Server 3 does not have local tasks
- Task types: Type 1 is local to server 1, and Type 2 is local to server 2
- Servers with local tasks are overloaded: $\lambda_1 > \alpha, \lambda_2 > \alpha$
- Heavy-traffic parameter:

$$\epsilon = 2\alpha + \gamma - (\lambda_1 + \lambda_2)$$



Key Steps

- Lower Bound
 - Resource Pooling

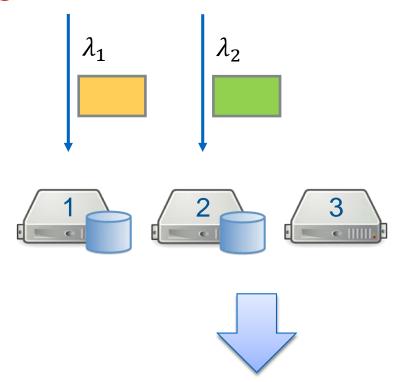
- Establish State-Space Collapse
 - Using insight about why the algorithm might achieve the lower bound

- Obtain an Upper Bound
 - Again using the insight from the lower bound and the state-space collapse to choose an appropriate function whose drift is equal to zero

Universal Lower Bound

- For any scheduling policy, the backlog is lower bounded by the queue length in the system where
 - Servers are running at maximum speeds
 - The service resource is pooled together
- By the Kingman bound for single queue,

$$\mathbb{E}[\text{backlog}] \ge \frac{\mathbb{E}[(a-s)^2]}{2\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

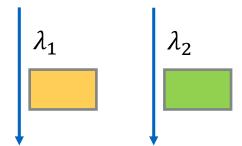


Lower bounding system

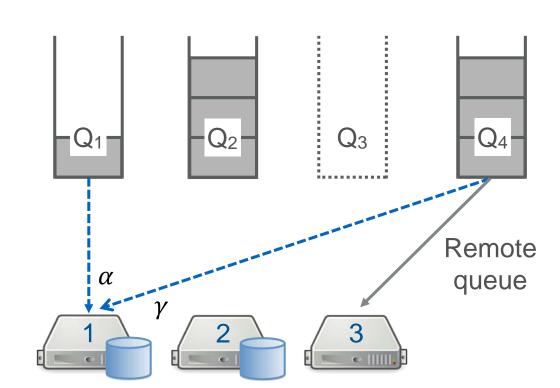
$$\lambda_1 + \lambda_2$$
 $2\alpha + \gamma$

JSQ-MaxWeight: What can go wrong?

 Similar to JSQ, a server can be idling when there is still unfinished work in the system

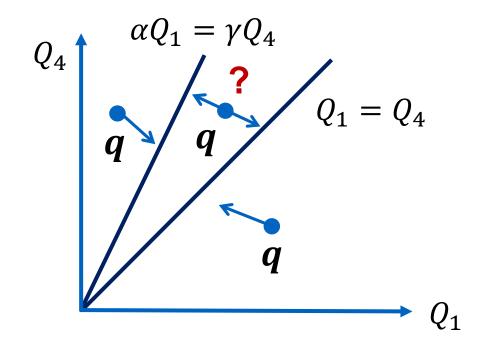


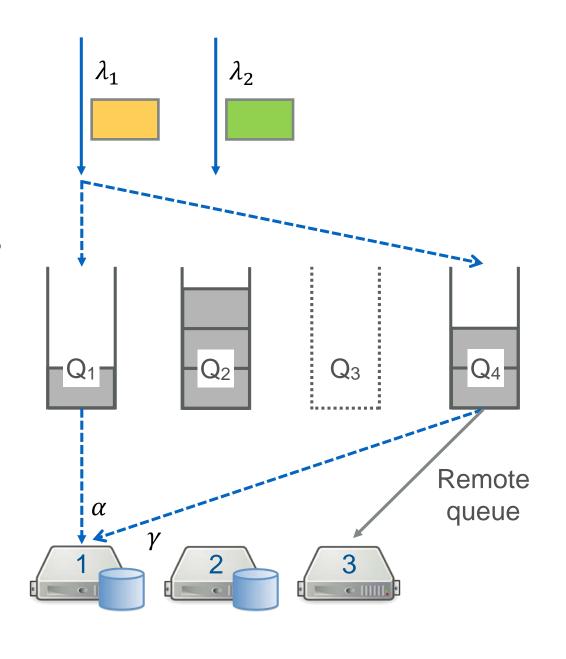
- A server can be working on a remote task when it has local tasks
- Then it is not running at full speed
- Again, in heavy traffic, these should happen rarely under the JSQ-MaxWeight



State-Space Collapse

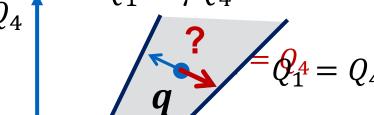
- JSQ tries to balance Q_1 and Q_4
- MaxWeight tries to balance αQ_1 and γQ_4
- Where does the state space collapses to?



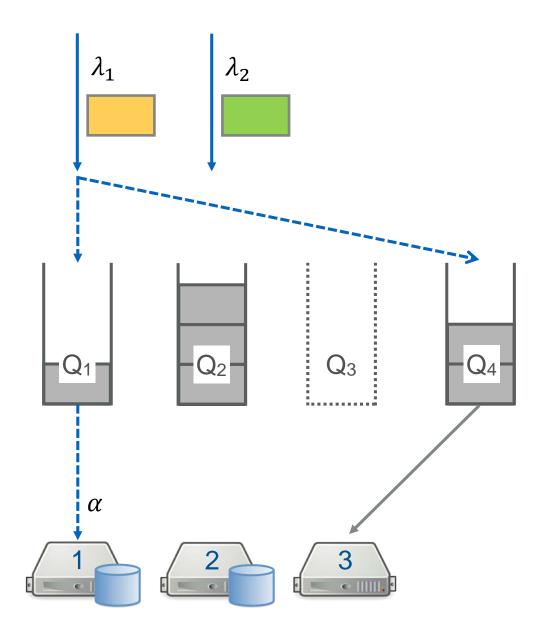


State-Space Collapse

- When $\alpha Q_1 \ge \gamma Q_4$, server 1 works on Q_1
- Then the system behaves like a JSQ system
- So the queue vector further goes towards $Q_1 = Q_4$
- The state space_collapses to



• Then we expressed to behave like a single qual as in the lower bound; all queues are roug equal, so they would all hit zero "simult eously", and all servers are running on full steeds



Upper Bound

- Want to prove the system indeed behaves like a JSQ system
- That is to prove Server 1 serves Q_1 most of the time and Server 2 serves Q_2 most of the time
- Queue dynamics:

$$Q_m(k+1) = Q_m(k) + A_m(k) - S_m(k) + U_m(k), \qquad m = 1, 2, 4$$

• We prove that $(S_1(k), S_2(k), S_4(k)) \approx (S_1'(k), S_2'(k), S_4'(k))$, where $S_m'(k)$'s are "ideal" service: $S_1'(k)$ and $S_2'(k)$ have rate α , $S_4'(k)$ has rate γ

Upper Bound

- Then obtaining the upper bound is similar to JSQ
- Setting the drift of $V(q) = (\sum_{l} q_{l})^{2}$ equal to zero yields:

$$\mathbb{E}[\text{backlog}] \le \frac{\mathbb{E}[(a-s)^2]}{2\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

Coincides the universal lower bound for any scheduling policy

Heavy-Traffic Analysis for Continuous-Time Systems

R. Srikant and Weina Wang University of Illinois at Urbana-Champaign

Outline

- Single Queue in Continuous Time
- Join-the-Shortest-Queue in Continuous Time
- Proportionally Fair Bandwidth Sharing (Wang et al, in progress)

Single Queue in Continuous Time

Single Queue in Continuous Time

- Packet arrivals: Poisson process with rate λ
- Service time: exponential with mean $1/\mu$

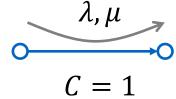
- n(t): # packets $n \to n+1 \text{ with rate } \lambda$ $n \to n-1 \text{ with rate } \mu \mathbf{1}_{\{n>0\}} \longrightarrow \mu \mu U$
- Load: $\rho = \lambda/\mu$

- Unused service: $U = 1 \mathbf{1}_{\{n > 0\}}$
- Note that

$$n \cdot U = 0$$

Equivalent Model: One Link, One Flow Type

- Flow arrivals: Poisson process with rate λ
- Each flow corresponds to the transfer of a file whose size is exponentially distributed with mean $1/\mu$



• n(t): # of flows

Load: $\rho = \lambda/\mu$

•
$$x$$
: bandwidth allocated to each flow, $x = \begin{cases} \frac{1}{n}, & \text{if } n > 0 \\ 0, & \text{if } n = 0 \end{cases}$

$$n \to n+1$$
 with rate λ
 $n \to n-1$ with rate $nx\mu$ $\longrightarrow \mu - \mu U$

- Unused bandwidth: $U = 1 nx = 1 \mathbf{1}_{\{n > 0\}}$
- Note that

$$n \cdot U = 0$$

Single Queue

- Want to bound $\mathbb{E}[n(t)]$ in steady state
- Set the drift of Lyapunov function $V(n) = n^2$ to zero:

$$\lambda, \mu$$

$$C = 1$$

Load: $\rho = \lambda/\mu$

$$\mathbb{E}\left[\left(n(t+\Delta t)\right)^{2}\right] = \mathbb{E}\left[\left(n(t)\right)^{2}\right]$$

$$\Leftrightarrow \mathbb{E}\left[\Delta n^{2}\right] = 0$$

Drift equation:

$$\Delta n^{2} = \lambda ((n+1)^{2} - n^{2}) + (\mu - \mu U)((n-1)^{2} - n^{2})$$

$$= 2(\lambda - \mu + U)n + \lambda + \mu - \mu U$$

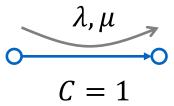
$$= 2(\rho - 1) \cdot n\mu + 2U \cdot n\mu + \lambda + \mu - \mu U$$

Bound on Backlog

$$\Delta n^2 = 2(\rho - 1) \cdot n\mu + 2U \cdot n\mu + \lambda + \mu - \mu U$$

- $2U \cdot n\mu = 0$
- $\mathbb{E}[\mu \mu U] = \lambda$: departure rate = arrival rate
- $\mathbb{E}[\Delta n^2] = 0$ in steady state: $0 = 2(\rho 1) \cdot \mathbb{E}[n] \mu + 2\lambda$, which yields

$$\mathbb{E}[n] = \frac{\rho}{1 - \rho}$$

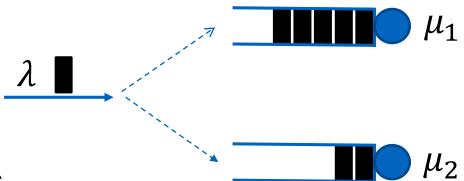


Load: $\rho = \lambda/\mu$

Join-the-Shortest-Queue in Continuous Time

JSQ

Continuous-time model



 Route arrivals to the shorter of the two queues, breaking ties at random

$$(n_1, n_2) o (n_1 + 1, n_2)$$
 with rate $\lambda \mathbf{1}_{\{n_1 < n_2\}} + \frac{\lambda}{2} \mathbf{1}_{\{n_1 = n_2\}}$
 $(n_1, n_2) o (n_1, n_2 + 1)$ with rate $\lambda \mathbf{1}_{\{n_1 > n_2\}} + \frac{\lambda}{2} \mathbf{1}_{\{n_1 = n_2\}}$
 $(n_1, n_2) o (n_1 - 1, n_2)$ with rate $\mu_1 \mathbf{1}_{\{n_1 > 0\}} \longrightarrow \mu_1 - \mu_1 U_1$
 $(n_1, n_2) o (n_1, n_2 - 1)$ with rate $\mu_2 \mathbf{1}_{\{n_2 > 0\}} \longrightarrow \mu_2 - \mu_2 U_2$

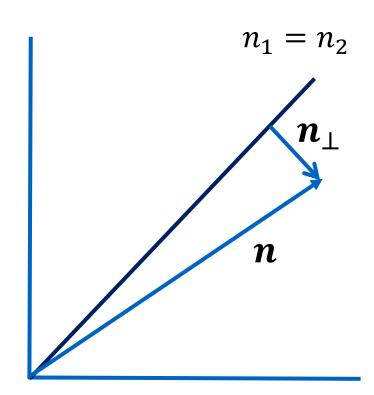
Unused service

$$U_1 = 1 - \mathbf{1}_{\{n_1 > 0\}}$$

$$U_2 = 1 - \mathbf{1}_{\{n_2 > 0\}}$$

State-Space Collapse

- Heavy traffic parameter $\epsilon = \mu_1 + \mu_2 \lambda$
- Similar to the discrete-time model, we prove that $n_1 \approx n_2$ in heavy traffic



Upper Bound for JSQ

• Set the drift of $V(n) = (n_1 + n_2)^2$ equal to zero:

$$\mathbb{E}[\Delta(n_1 + n_2)^2] = 0$$

Drift equation

$$\Delta (n_1 + n_2)^2 = \lambda ((n_1 + n_2 + 1)^2 - (n_1 + n_2)^2)$$

$$+ (\mu_1 - \mu_1 U_1 + \mu_2 - \mu_2 U_2) ((n_1 + n_2 - 1)^2 - (n_1 + n_2)^2)$$

$$= 2(n_1 + n_2)(\lambda - \mu_1 - \mu_2 + \mu_1 U_1 + \mu_2 U_2)$$

$$+ (\lambda + \mu_1 - \mu_1 U_1 + \mu_2 - \mu_2 U_2)$$

$$= 2(n_1 + n_2)(\lambda - \mu_1 - \mu_2) + 2(n_1 + n_2)(\mu_1 U_1 + \mu_2 U_2)$$

$$+ (\lambda + \mu_1 - \mu_1 U_1 + \mu_2 - \mu_2 U_2)$$

Upper Bound for JSQ

$$\Delta (n_1 + n_2)^2 = 2(n_1 + n_2)(\lambda - \mu_1 - \mu_2) + 2(n_1 + n_2)(\mu_1 U_1 + \mu_2 U_2) + (\lambda + \mu_1 - \mu_1 U_1 + \mu_2 - \mu_2 U_2)$$

- Still focus on the term $(n_1 + n_2)(\mu_1 U_1 + \mu_2 U_2)$
- Note that $n_1U_1=0$, but $n_2U_1\neq 0$
- But, from state-space collapse, $n_1 \approx n_2$, and thus, $n_2 U_1 \approx 0$
- Then $\mathbb{E}[\Delta(n_1 + n_2)^2] = 0$ yields

$$\mathbb{E}[n_1 + n_2] = \frac{\lambda}{\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

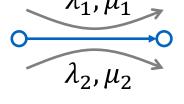
Proportionally Fair Bandwidth Sharing

One Link, Two Flow Types

- x_r : bandwidth allocated to each flow of type r
- Proportionally fair bandwidth allocation:

$$\max_{\{x_1, x_2\}} \quad n_1 \log x_1 + n_2 \log x_2$$

subject to
$$n_1 x_1 + n_2 x_2 \le 1$$



Solution:

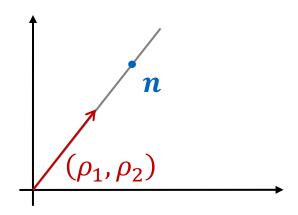
$$n_1 x_1 = n_1/p$$
, $n_2 x_2 = n_2/p$,

 $p \ge 0$: Lagrange multiplier of the constraint

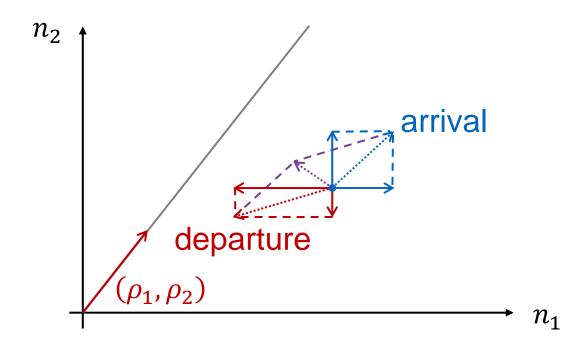
Stability:

$$n_1 x_1 \approx \rho_1, \qquad n_2 x_2 \approx \rho_2$$

 $\Rightarrow n_1 \approx \rho_1 p, \qquad n_2 \approx \rho_2 p$
 $\Rightarrow (n_1, n_2) \approx p(\rho_1, \rho_2)$



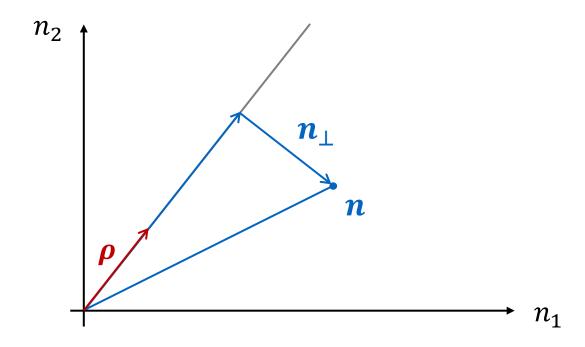
State-Space Collapse



Service rates are proportional to # of flows

When the flow count vector (n_1, n_2) is far from the direction (ρ_1, ρ_2) , the departure rates pull it back

State-Space Collapse



- Heavy-traffic parameter: $\epsilon = 1 \rho_1 \rho_2$
- State space collapse:

$$\mathbb{E}[\|\boldsymbol{n}_{\perp}\|] = o\left(\frac{1}{\sqrt{\epsilon}}\right), \qquad \frac{\mathbb{E}[\|\boldsymbol{n}_{\perp}\|]}{\mathbb{E}[\|\boldsymbol{n}\|]} = o(\sqrt{\epsilon})$$

Dynamics

State transition rates

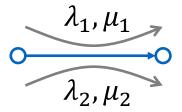
$$(n_1, n_2) \to (n_1 + 1, n_2)$$
 with rate λ_1
 $(n_1, n_2) \to (n_1, n_2 + 1)$ with rate λ_2
 $(n_1, n_2) \to (n_1 - 1, n_2)$ with rate $n_1 x_1 \mu_1$
 $(n_1, n_2) \to (n_1, n_2 - 1)$ with rate $n_2 x_2 \mu_2$

Unused bandwidth

$$U = 1 - (n_1 x_1 + n_2 x_2)$$

Note that

$$U > 0$$
 only when $n_1 = 0$, $n_2 = 0$



Loads:
$$\rho_1 = \lambda_1/\mu_1$$

 $\rho_2 = \lambda_2/\mu_2$

Bound on Backlog

- Set the drift of $V(n) = (c_1n_1 + c_2n_2)^2$ equal to zero for some c_1 and c_2
- Drift equation

$$\begin{split} \Delta \left(c_{1}n_{1} + c_{2}n_{2} \right)^{2} &= \lambda_{1} \Big((c_{1}(n_{1}+1) + c_{2}n_{2})^{2} - (c_{1}n_{1} + c_{2}n_{2})^{2} \Big) \\ &+ \lambda_{2} \left(\left(c_{1}n_{1} + c_{2}(n_{2}+1) \right)^{2} - (c_{1}n_{1} + c_{2}n_{2})^{2} \right) \\ &+ n_{1}x_{1}\mu_{1} \Big((c_{1}(n_{1}-1) + c_{2}n_{2})^{2} - (c_{1}n_{1} + c_{2}n_{2})^{2} \Big) \\ &+ n_{2}x_{2}\mu_{2} \left(\left(c_{1}n_{1} + c_{2}(n_{2}-1) \right)^{2} - (c_{1}n_{1} + c_{2}n_{2})^{2} \right) \\ &= 2(c_{1}n_{1} + c_{2}n_{2})(c_{1}\lambda_{1} + c_{2}\lambda_{2} - c_{1}n_{1}x_{1}\mu_{1} - c_{2}n_{2}x_{2}\mu_{2}) \\ &+ c_{1}^{2}\lambda_{1} + c_{2}^{2}\lambda_{2} + c_{1}^{2}n_{1}x_{1}\mu_{1} + c_{2}^{2}n_{2}x_{2}\mu_{2} \end{split}$$

Drift Analysis

$$\Delta (c_1 n_1 + c_2 n_2)^2 = 2(c_1 n_1 + c_2 n_2) \underbrace{(c_1 \lambda_1 + c_2 \lambda_2 - c_1 n_1 x_1 \mu_1 - c_2 n_2 x_2 \mu_2)}_{+c_1^2 \lambda_1 + c_2^2 \lambda_2 + c_1^2 n_1 x_1 \mu_1 + c_2^2 n_2 x_2 \mu_2}$$

- We know that $\epsilon = 1 \rho_1 \rho_2$ and $U = 1 n_1 x_1 n_2 x_2$
- We should choose $c_1 = \frac{1}{\mu_1}$, $c_2 = \frac{1}{\mu_2}$ to get

$$c_1\lambda_1 + c_2\lambda_2 - c_1n_1x_1\mu_1 - c_2n_2x_2\mu_2 = \rho_1 + \rho_2 - n_1x_1 - n_2x_2$$
$$= -\epsilon + U$$

• Note that $(c_1n_1 + c_2n_2)U = 0$

Drift Analysis

$$\Delta (c_1 n_1 + c_2 n_2)^2 = 2(c_1 n_1 + c_2 n_2)(c_1 \lambda_1 + c_2 \lambda_2 - c_1 n_1 x_1 \mu_1 - c_2 n_2 x_2 \mu_2) + c_1^2 \lambda_1 + c_2^2 \lambda_2 + c_1^2 n_1 x_1 \mu_1 + c_2^2 n_2 x_2 \mu_2$$

- We have chosen $c_1 = \frac{1}{\mu_1}$, $c_2 = \frac{1}{\mu_2}$
- State space collapse: $\frac{n_1}{n_2} \approx \frac{\rho_1}{\rho_2}$
- Then

$$c_1 n_1 + c_2 n_2 \approx \left(\frac{\rho_1}{\rho_2 \mu_1} + \frac{1}{\mu_2}\right) n_2 \approx \frac{\lambda_1 / \mu_1^2 + \lambda_2 / \mu_2^2}{\rho_1 + \rho_2} (n_1 + n_2)$$

Drift Analysis

$$\Delta (c_1 n_1 + c_2 n_2)^2 = 2(c_1 n_1 + c_2 n_2)(c_1 \lambda_1 + c_2 \lambda_2 - c_1 n_1 x_1 \mu_1 - c_2 n_2 x_2 \mu_2)$$

$$+ c_1^2 \lambda_1 + c_2^2 \lambda_2 + c_1^2 n_1 x_1 \mu_1 + c_2^2 n_2 x_2 \mu_2$$

- $\mathbb{E}[n_r x_r \mu_r] = \lambda_r$, r = 1,2: departure rate = arrival rate
- Then

$$\mathbb{E}\left[c_1^2\lambda_1 + c_2^2\lambda_2 + c_1^2n_1x_1\mu_1 + c_2^2n_2x_2\mu_2\right] = 2\left(\lambda_1/\mu_1^2 + \lambda_2/\mu_2^2\right)$$

Bound on Backlog

$$\Delta (c_1 n_1 + c_2 n_2)^2 = 2(c_1 n_1 + c_2 n_2)(c_1 \lambda_1 + c_2 \lambda_2 - c_1 n_1 x_1 \mu_1 - c_2 n_2 x_2 \mu_2)$$
$$+ c_1^2 \lambda_1 + c_2^2 \lambda_2 + c_1^2 n_1 x_1 \mu_1 + c_2^2 n_2 x_2 \mu_2$$

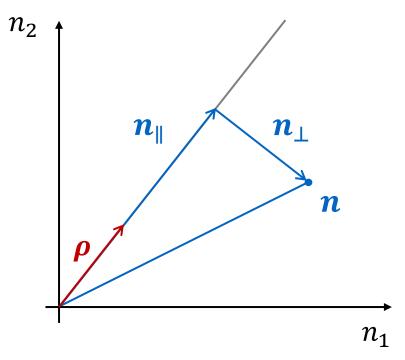
• Setting $\mathbb{E}[\Delta(c_1n_1 + c_2n_2)^2] = 0$ yields

$$\mathbb{E}[n_1 + n_2] = \frac{1}{\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

Weighted Inner Product

- n_{\parallel} : projection of n onto the (half) subspace spanned by ho
- The Lyapunov function $V(n) = (n_1/\mu_1 + n_2/\mu_2)^2$ is the same as $V(n) = \|\mathbf{n}_{\parallel}\|^2 = \langle \boldsymbol{\rho}, \boldsymbol{n} \rangle^2$ when we use the following weighted inner product

$$\langle \boldsymbol{\rho}, \boldsymbol{n} \rangle = (\rho_1 \quad \rho_2) \begin{pmatrix} \frac{1}{\lambda_1} & 0 \\ 0 & \frac{1}{\lambda_2} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \end{pmatrix}$$
$$= n_1/\mu_1 + n_2/\mu_2$$



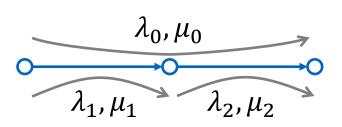
Extending to General Networks

Two Links, Three Flow Types

Proportionally fair bandwidth allocation:

$$\max_{\{x_0,x_1,x_2\}} \quad n_0 \log x_0 + n_1 \log x_1 + n_2 \log x_2$$
 subject to
$$n_0 x_0 + n_1 x_1 \leq C_1$$

$$n_0 x_0 + n_2 x_2 \leq C_2$$



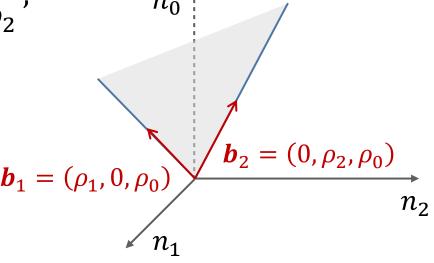
Solution:

$$n_0 x_0 = \frac{n_0}{p_1 + p_2}, \qquad n_1 x_1 = \frac{n_1}{p_1}, \qquad n_2 x_2 = \frac{n_2}{p_2},$$

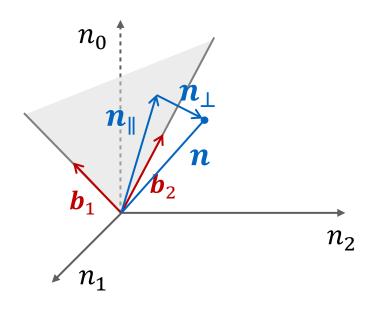
 p_1, p_2 : Lagrange multipliers of the constraints

• Stable: $n_0x_0 \approx \rho_0$, $n_1x_1 \approx \rho_1$, $n_2x_2 \approx \rho_2$

$$\Rightarrow$$
 $(n_1, n_2, n_0) \approx p_1(\rho_1, 0, \rho_0) + p_2(0, \rho_2, \rho_0)$



State-Space Collapse



• n_{\parallel} : projection onto the cone spanned by $\{b_1, b_2\}$

- Heavy-traffic regime: $\rho_0 + \rho_1 = (1 \epsilon)C_1$, $\rho_0 + \rho_2 = (1 \epsilon)C_2$
- State space collapse:

$$\mathbb{E}[\|\boldsymbol{n}_{\perp}\|] = o\left(\frac{1}{\sqrt{\epsilon}}\right), \qquad \frac{\mathbb{E}[\|\boldsymbol{n}_{\perp}\|]}{\mathbb{E}[\|\boldsymbol{n}\|]} = o(\sqrt{\epsilon})$$

Bound on Backlog

• Still consider the Lyapunov function $V(n) = ||n_{\parallel}||^2$, with the weighted inner product

$$\langle \boldsymbol{a}, \boldsymbol{n} \rangle = (a_1 \quad a_2 \quad a_0) \begin{pmatrix} \frac{1}{\lambda_1} & 0 & 0\\ 0 & \frac{1}{\lambda_2} & 0\\ 0 & 0 & \frac{1}{\lambda_0} \end{pmatrix} \begin{pmatrix} n_1\\ n_2\\ n_0 \end{pmatrix}$$

• Setting $\mathbb{E}[\Delta V(n)] = 0$ yields

$$\mathbb{E}[n_0 + n_1 + n_2] = \frac{2}{\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

Bound on Backlog in a General Network

- L: # links in the network
- The state space collapses to an L-dimensional cone
- Setting $\mathbb{E}\left[\Delta \|\boldsymbol{n}_{\parallel}\|^{2}\right] = 0$ yields

$$\mathbb{E}\left[\sum_{r} n_{r}\right] = \frac{L}{\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

Insensitivity

The backlog bound

$$\mathbb{E}[\text{backlog}] = \frac{L}{\epsilon} + o\left(\frac{1}{\epsilon}\right)$$

holds for a general class of phase-type distributions for file sizes

- This distribution class can approximate any file size distribution arbitrarily closely
- Need a more involved weighted inner product
- The delay performance of the proportionally fair bandwidth sharing policy is insensitive to the file size distribution