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Data Centers
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This article is abouf the country. For other uses, see Jspan (desmbiguation).
"WNippon® redirects here. For other uses, see Nigpon (disambiguation).
Japan (Japanese: E1# Mippon [ngpdn] or Nivon [nihge]; formally B 0
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Tutorial

- Resource Allocation Problems in Data Centers and Cloud Computing
. Recent results and open problems

- Mean-Field Approximation
. A very brief and high-level introduction

. Heavy-Traffic Approximation
. A very brief and high-level introduction



Outline of Part |

- Load Balancing

- Load-balancing in large data-storage systems
. Scheduling with Data Locality

. Job vs Task Scheduling

- Minimizing data transfer delay Iin data center networks



Load Balancing

- Which gueue to join?
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Load Balancing

. Join-the-Shortest Queue (Overhead?)

. Power-of-two choices: sample two at random, join the
shortest of the two

2T <~
-
~

~ Vo
-y
—y
—y
—y
—y
—y
—y
—y
—y
~ oy
~ ~ oy
\ L
—y
—y
[
—y
—y
—y
—y
[
—y
—y
—y
—y
~ oy
—y

f’
f’
-

f”
-

o 2 £ &8 - &0




Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling

- Minimizing data transfer delay Iin data center networks



Reliability and Load Balancing

. Servers which store files fall occasionally
. Each file is stored in multiple servers to protect against such failures

. This provides a load balancing opportunity
. Which server or servers should we fetch a file from?

- How do different schemes to improve reliability help in terms of load-
balancing?

- Well studied problem, one point of view here



Replication

Server 1 Server 2 Server 3 Server 4



Replication
. (2,1) code

Server 1 Server 2 Server 3 Server 4



Coding: Reduce Storage, Maintain Reliability

. (3,2) code

LotR: A+B

-y

Server 1 Server 2 Server 3



Coding: Improve Reliability, Maintain Storage

. (4,2) code

LotR: A+B otR: A+2B

Server 1 Server 2 Server 3 Server 4



Focus on Load Balancing

. For the rest of this part, we will not model server failures

. These will be assumed to occur at a slower timescale than the rate at
which files are accessed from the servers

. We will focus on how to exploit redundancy In file storage (through
replication or coding) to improve the speed with which we can fetch a
file from the servers

. Using load balancing



Replication and Load Balancing: (2,1) Code
File requests

o
—

Server 1 Server 2 Server 3 Server 4



Coding and Load Balancing: (4,2) Code

File requests

Need chunks from @

two servers, but each
chunk is half the size
of the original photo

LotR: A+B otR: A+2B

Server 1 erver 2 Server 3 Server 4



In this talk....

- (Nn,1) code (replication):
- Each file is replicated at n different servers
- The size of the each copy of the file Is 1

. (nk,k) code

- Each file Is encoded into nk chunks and stored in nk different servers
- The size of each chunkis 1/k

- Any k out of the nk chunks are sufficient to recover the entire file

. Total storage space Is the same as above



Delay comparison: (n,1) vs. (nk,k) code

. Question: Does the delay improve with coding In the large-system
limit (large number of servers, files, arrival rates)?

- “Result” (LI, Ramamoorthy, S., 2016): Under a Poisson

arrival/exponential service-time model, the delay decreases by a

factor of at least p N
H (k)

k

o J

where H(k) is the k" harmonic number:
1 1 1
1+-4+-4-4 -
2 3 Kk



Very light traffic (zero queues): (2,1) vs. (4,2) code

. File service time Is exponentially distributed
. Mean file access delay under (2,1) code (replication):

w1l = E[X] (X~Exp(1))
=1
- Mean file access delay under (4,2) code:

W®*2) = E[max{Y;,Y,}] (Y; and Y, are i.i.d. with Exp(2))

3
4

Compared with replication, delay improves by 25% under coding



Very light traffic (zero queues): (n,1) vs. (nk,k) code

. Mean file access delay under (n,1) code (replication):
Wb = E[X] (X~Exp(1))
=1
- Mean file access delay under (nk,k) code:

wnkk) — E rlnzax Y: (Y;, Vi, are 1.1.d. with Exp(k))
i

H()
K



General Traffic Case: (n,1) vs. (nk,K) code

. Question: What happens for general arrival rates?

. Answer: In the many-servers limit,
. In the heavy-traffic regime

w k) H (k)
' — <
I;H? wmny — g

- Conjecture: In the many-servers limit, for all feasible arrival rates,

W Hk)
WD =k




Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling

- Minimizing data transfer delay Iin data center networks



L oad-Balancing and Communication

. Each server stores certain data
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. |f a task Is routed to a server with the required data chunk, then it
executes quickly; otherwise, it has to fetch the data from another server,

thus leading to longer processing times
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L oad-Balancing and Communication
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Modeling Data Locality

. For the rest of this part, we will not model the dynamics in the network
- We abstract the network away and assume that

local processing rate > remote processing rate

. We will focus on how to strike the right balance between load-balancing
and communication to maximize throughput and minimize delay



Task Types

. Task type: servers that store its input data (local servers)

Task(—)[ A ]

Type = (1, 2, 4)

Arrival rates  A@a,2,3) A1,2,4) AN125 ... Aij K
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Viax WElghted BaCklOg [Tassiulas and Ephremides 1993]

. hen server 2 becomes avallable:
+ Throughput O@gﬂ?ﬁ\é@fﬁequeue with the maximum weight

. Too many queues: O(M3) M ~ Tens of thousands
Weidtot dédayldptimal; [Stolyar 2004, Mandelbaum and Stolyar 2004]
Viewed by Server 2 GQ[(l,Z,B) 0 2,3,4) VY\UB45 ... )/%(l,j, K)
Q23 Qe34 Q@45 ... Qdjk

Per task
type queue

a-=>y

PUEyaArs

Service rates a a
2

Servers E/ % .
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Achieving Delay Optimality under Data Locality

[Wang et al. 2013] %ha S{ Tiwse = (1, 2, 4)
~ -~ N3
Step 1: Join the Shortest Queue

IrIUC 7!. Ul LIIC II'\NJCI UI IC'JI S

-----------------------------------------------------------------------------------------------------------------------------
N

Local Remote
gueues Ql\/|+1 ~ queue

hES .’
...........................................................................................................................................

Welights: O(Q ;
Step 2. : ! YQM ;

MaxWeight Tasks from
overloaded servers

Servers (185 (el (el E/saﬁ ﬂﬁ

>




Performance

. Maximizes Throughput

.- Delay optimality in the following heavy-traffic regime

----------------------------------------------------------
---------------------------------------------------------------------------------------

------------------------------------------------------------
--------------------------------------------------------------------------------------

Overloaded No data storage

Peak hours of data centers



Delay Optimality

. Total backlog (based on Eryilmaz, S. 2012) Stability region

£/
Arrival rate
vector

M+1

2 2
: (€) _O' + VvV 1
$ 0] -2 o1
m=1

. Coincides with the lower bound where all the servers are pooled
together and running on full speed

. Asymptotically minimizes the total backlog
. By Little’s law, it asymptotically minimizes the average task delay




Delay Optimality for All Heavy-Traffic Regime
[Xie and Lu 2015]

Task Type = (1, 2, 4)

Join the Shortest Queue Again heavy-traffic

optimal in the sense of
Eryilmaz, S. (2012)

-

Servers E/gﬁ E/gﬁ E/Qﬁ E/gﬁ

Prioritized scheduling - Local tasks first
- No local tasks: serve the longest queue




Open Problem

. In our discussion, we considered problems where each job consists
of a single task

. Instead, suppose each job consists of multiple tasks, and a job Is
completed only when all the tasks in the job are completed

. Further each task can be allocated to a different server If needed
. Scheduling algorithms which minimize job delays are unknown

. But near-optimality can be achieved when there is no data locality



Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling (with no data locality)

- Minimizing data transfer delay Iin data center networks



Jobs with Multiple Tasks

. Matrix-vector multiplication: Mx
. Basic operation for PageRank, regression analysis, ...

task |— task




Single-Server System

Job 2 arrives

-
o | B
o @& Ef;?ty

0 1 Average latency is smaller Time

Jime

Job2 Jobl

. Fewest-Unassigned-Tasks (FUT) first?
- Analogy to Shortest-Remaining-Processing-Time (SRPT) policy
- Not sample-path optimal for jobs with multiple tasks



Near Delay Optimality of FUT

Job 2 arrives
latency

FUT:
oldin Time

[
[ @l
D time
D D Near delay optimality:

Average holding time of FUT < Average latency of any policy
Job 2 Job 1 [Sun, Koksal, Shroff 2017]

- Holding time of a Jjob: amount of time a job spends In the queue
. Single server system: latency — holding time = service time of one task

- More generally: latency — holding time < Constant



INntultion

System A FUT System B Another policy

)
- @l

Job1l Job3 Job?2 Job1l Job3 Job?2

. Average holding time of FUT = average latency of System A
. Tasks leave System A from the job with the fewest remaining tasks
- For any [0, t], task departures: System A =2 System B



Open Problem

. Back to the matrix multiplication example

- The job consists of not only many tasks, but the tasks have to be
executed in multiple stages, I.e., there are precedence constraints

.- Delay-optimal or near-optimal scheduling policies for multi-stage,
multi-task jobs are unknown

. Data locality and multiple stages???



Outline of Part |

- Load-balancing in large data-storage systems
. Scheduling with Data Locality
. Job vs Task Scheduling

. Minimizing data transfer delay Iin data center networks



Data Transfer Flows

. How to allocate bandwidth to flows to minimize file transfer delay?
. Links have bandwidth capacities, shared by flows

Share bandwidth 7

Servers E/ nﬁ




Resource Allocation

. Xx,. rate allocated to a flow on route r
. n,.. # of flows on route r

. (;: capacity of link

. Constraints:

Enrxr < CZ,VI

1=

. Goal: how should we choose {x,} to minimize data transfer delay?



File Transfer Delay

. |f a flow on route r arrives at time A, and has file size E., then its
delay D, Is determined by the equation:

Ar+D,
f x,.(t)dt = F. (1)

Ay

. F.: random variable
. The choice of {x,.} affects the delay D,. through (1)



A Performance Criterion

. Suppose there are N servers in the system
. # of source-destination pairs is O(N?)

. # of links in a data center network is L << N?4
. Example: N*~10%, L~10%* in a tree structured data center network

. Goal: E[# of flows] ~ O(L) instead of O(N?)



Proportional Fairness

. Choose {x..} to maximize

z n, log x,.

T

. log x,.. utility of a flow on route r when allocated a rate of x,

. Subject to resource constraints on each link



Results

. Asymptotically tight bounds on total backlog (Kang et al, 2009)

L 1
L #flows| =40 (—)

€ €

Capacity region

Arrival rate

. L: number of saturated links Iin heavy traffic vector

. Insensitivity: the bounds hold for a general class of phase-type
distributions for data sizes (Vlasiou et al, 2014)

. This distribution class can approximate any data size distribution
arbitrarily closely



Open Problem

. The file transfers may occur to achieve some other load-balancing
goal

- Such as to fetch remote data at a server In the data locality problem

. Joint resource allocation for data-transfer and load balancing in the
presence of data locality to achieve optimal or near-optimal job/task
delays Is an open problem



Open Problems

. Coding/Replication/Load Balancing Tradeoffs

. Analyzing/minimizing job delay

. Scheduling jobs with multiple stages
Dependence among tasks puts constraints on scheduling decisions

Job

Task

Task

Task

—_>

Task

Task

Task

. Joint design of task scheduling and data transfer




Rest of the Tutorial

. Difficult to analyze most resource allocation schemes exactly
. There are some exceptions

. Two asymptotic regimes
- The number of servers is very large (mean-field limit)
. The traffic load approaches the capacity of the system (heavy-traffic)

- The first regime Is perhaps more realistic for data centers

- The second regime often provides insight into why certain policies
behave better than others (even in light to moderate traffic)



Tutorial on Mean-Field
Analysis

R. Srikant and Weina Wang
University of lllinois at Urbana-Champaign



Load Balancing

. Join-the-Shortest-Queue Arrival process is Poisson(NA)

- Random Routing Service times are exp(1)
- Power-of-d-Choices
. Batch-filling
- Redundancy-d
Join-the IdIZ Queue l N (A <)
&< (u=1)
T ’A/, ‘IV \\\.\ ~~~~~~~~ S




Random Routing

- Route an arrival to a queue uniformly at random
. N separate M/M/1 queues with load 4
- Queue length:

Pr(Q =i) =X Can we do better?
l NA (A <1)
(u=1)




Join-the-Shortest-Queue

- Each arrival joins the shortest queue among all the N queues
- Minimizes average delay
- Requires information about all gueues: large overhead

-
f’

| I I |
] STV ] STV ] STV ] ATTITTE ] ATTITTE



Power-of-d-Choices

. Each arrival picks d queues at random and joins the shortest one

- Queue length:

dl-1
lim Pr(Q = i) = Ada-1  doubly exponential
n—>00
Example: d = 2 l NA (A <1)
v (u=1)
7"/ N ;\\
] v

I&‘ l@’ l&l

u$= u&:




Equivalent model: Simple Load-Balancing for Data Locality

. Each data chunk is in 2 servers: (N) places where a data chunk can be

2
- Arrival checks the servers that have its data and joins the shortest one

- Equivalent to the Power-of-2-Choices

lm (2 < 1)
4 (u=1)
L’,/ \\\A

[



State Representation

« Queue length vector: Q = (Q4,0,,05,0,) = (1,2,0,0)
- Equivalent representation:

s;(t): fraction of queues with at least i tasks at time t

3 s3 =0
2 s, =1/4
0 so=4/4=1



Dynamics

. s;(t): fraction of queues with at least i tasks at time t

- When does s; change?
. s; does not change when a task arrives to queue with < i — 1 tasks or > i tasks
. s; = s;+1/N when a task arrives to a queue with i — 1 tasks

. s; does not change when a task departures from queue with < i tasks or > i + 1 tasks
. s; —» s; —1/N when a tasks departs from a queue with i tasks

SZ :1/4

O Frr N W

Q1 Q2 Qs Q4



Power-of-2-Choices: Arrivals

. s;(t+6)=s;+1/N when atask arrives to a queue with i — 1 tasks
- Happens when an arrival chooses two queues where the shorter one has

i — 1 tasks
Probability » NA§(s7; — s7)

lm (2 < 1)
v (u=1)
L’,/ \\\A

_Ql_ _ o =

s7 .. both queues > i — 1

s7: both queues > i




Power-of-2-Choices: Departures

. s;(t+6) =s; —1/N when a tasks departs from a queue with i tasks
. # queue with i tasks = N(s; — s;41)

. Probability = N(s; — s;41)0



Mean-Field Analysis

. Drift: arrival departure
sE+8)—s®] ] 11 oo 17
E S S|=75 NNA(?(SL 1 — Si ) — —N(Sl S;i+1)0

= /1(51'—1 - 512) — (S; — Siv1)

as n — oo (not proved here)
- Mean field approximation:

ds;
— (Sl 17 ) — (i — Si+1)

- Use the fixed point of this set of differential equations as an approximation
for the original system



Solving for the Fixed Point
ds; 5 5
Fr A(Si—l — 5 ) — (i — Si+1)

. Fixed point: A(sEy —s?) = (s; — si31)
. Sufficient condition

As? =s;01,i =1,2, ...
. Solution: S; = Azi‘l,i =1,2,..

- Queue length probability decreases double exponentially

- Uniqueness (not proved here)



Steps Involved in the MFA

- Change the state description in terms of fractions of queues with at least a
certain queue length

- Compute

glir(l)E (Si(t + 6; — Si(t) |Si(t) _ Si)

- Use the above as an approximation to s;

. Study the differential equations



Power-of-d-Choices

Arrival: s;(t + 6) = s; + 1/N when a task arrives to a queue with i — 1 tasks
Probability ~ NA§(si; — sf)
Departure: same as power-of-2-choices

. arrival departure
Drift: N A
s;(t+8)—s;(t) 1/17 N 17 N
E [ l 5 : S] = (N NAS(Sid_l — Sl-d) - NN(SL- — si+1)6>

= A(Sid—l - Sid) — (s; — Siz1)

l as n — oo (need to prove)

Mean field analysis
dSi

ar A(Sid_l — Sid) — (si = Si41)



Power-of-d-Choices: Fixed Point

dSi

dt = /1(551—1 — Szd) — (S; — Si+1)

. Fixed point: A(sf; —sf) — (s; — si41) =0

. Sufficient condition
/lsl-‘i =s;.,1=1,2,..

dl—1

. Solution: s;=Ad-1,i=1,2, ..




Batch-Filling

Batch arrivals: each batch has m tasks batch {

—— task

Poisson batch arrivals with rate NA/m
- Total task arrival rate is still NA

Each batch arrival checks md gueues

. d: probe ratio



Batch-Filling

Waterfilling:

Fill the smallest queue until it equals the second smallest queue

- Then fill these until they become equal to the third smallest queue, and so on...

Example: m=4,d =1.5

] AT

] S

] AT

<€

NA (1<1)

(u=1)

] AT

3 <A

] AT

] AT

] AT




Batch-Filling

- Queue length:

lim Pr(Q = i) =

\
where

Q)
|

. Finite queue length

1-21

(1=DAd(1 + Ad)i L
1—(1=2d(1+ Ad)? 1

0

& (1 )
8\T—21

log(1 + Ad)

i =0,
1<i<0-1,
i =0,

otherwise,



Redundancy-d

- Each arrival makes copies at d servers chosen at random
- The other copies are killed once one copy is completed
- Harder to analyze

Example: d = 2 l N1 (A<1)
(u=1)
L~ - \\é\\




Join-the-ldle-Queue

- An arrival is routed to one of the idle servers at random if there is any; if not,
the arrival is routed to a server at random

- Queue length:
lim Pr(Q = i) =0, [ =2

n—00
l NA (<)
) (=1
No Idle queues .-" ' Idle queues

1

1

P 1
ya A\




Incomplete List of References

- PoD: Vvedenskaya, Dobrushin, Karpelevich (1996), Mitzenmacher (1996)
- Batch: Ying, S., Kang (2015, 2017)

- JIQ: Lu et al (2011), Stolyar (2015,...)

- Redundancy: Gardner et al (2015,...)

- Many other scaling regimes: Borst SIGMETRICS 2017 Talk



Heavy-Traffic Analysis for
Discrete-Time Systems

R. Srikant and Weina Wang
University of lllinois at Urbana-Champaign



Outline

- Kingman Bound for a Single Queue
. Join-the-Shortest-Queue (JSQ) Routing Policy (Eryilmaz, S., 2012)

- JSQ-MaxWeight for Scheduling with Data Locality (Wang et al, 2013)



Kingman Bound for a Single Queue



Single Queue 2

mo--

e qlk+1)=q(k)+a(k)—s(k)+u(k)
- a(k): # arrivals
. s(k): # potential departures
- u(k): unused service

. Want to bound E|q(k)] in steady state

. Set the drift of Lyapunov function V(g) = g* to zero:
E[q*(k + D] — E[q°(k)] =0

. Drift equation:
q“(k +1) — q*(k)
= 2q(k)(alk) — s(k)) + (alk) — s(k))"
+2u(k)(q(k) + alk) — s(k) + u(k)) — u?(k)



Drift Equation p

o~

q*(k +1) — q* (k) q(k + 1) = q(k) + a(k) — s(k) + u(k)
=[2q(k) (a(k) B S(k))}l{(a(k) _ S(k))z} In each time slot k,
+2u(k) (q(k) +a(k) —s(k) + u(k)) —u?(k) a(k): # arrivals
s(k): # potential departures
u(k): unused service

| E[q(0)(atk) — s(k))] = (A — wE[q(k)]

: {IE |(atk) — s(k))*| > 0% as A > J




Drift Equation (cont’d) p

o~

q*(k +1) — q* (k) gk + 1) = q(k) + a(k) — s(k) + u(k)
2
- Zq(k)(a(k) — S(k)) + (a(k) — S(k)) In each time slot k

H2u) (g + all) — s() +u) —w2®)|| | a@o:# amivals
s(k): # potential departures

u(k): unused service

gtk + Dul) =0 vk |

. [Ilil[u2 (k)] < spax(4 — /1)1 since

u?(k) < spax u(k), and

Elq(k + 1)] = Elq(k)] = Ela(k) —s(k) + u(k)] = 0 = Elu(k)] =pn—2



Kingman Bound p

o

q*(k +1) — q*(k) q(k +1) = q(k) + a(k) — s(k) +u(k)
2
- Zq(k)(a(k) B S(k)) T (a(k) B S(k)) In each time slot k
+2u(k) (q(k) + a(k) —s(k) + u(k)) —u?(k) a(k): # arrivals
s(k): # potential departures
u(k): unused service

. E[q?(k + 1)] — E[g?(k)] = 0 in steady state

yields

E[(a — s)*]
Elq] = 2= 1)

_I_

i (u i A)J

This term is small compared
to the first term when A - u




Key Fact about Unused Service

qg(k + Du(k) = 0




Join-the-Shortest-Queue (JSQ) Routing
Policy

{ (g1(k + 1) + qo(k + D)uy (k) = 0 J




JSQ

Discrete-time model

Route packet arrivals in each time slot to

the shorter of the two queues, breaking i} :IIIID 1y
ties at random
. | ’
- Well known that JSQ is heavy-traffic

optimal; will derive this result using the
Kingman-type drift argument

10



Universal Lower Bound: Resource Pooling

. For any routing policy, g; + g, Is lower

bounded by the queue length in the L " 1Ime
system where the service resource is 21

pooled together

7
.
» ~
~
~
~
~
~
~
~
~
~
b U

- By the Kingman bound for the single v
queue system, Lower bounding system

L 2
Elq, + q2] = El(a = 5) ]+0<1> A

¢ B A Ill‘lil +.542

- Heavy-traffic parameter € = yu; + u, — 4




JSQ: What can go wrong?

Because of the inherent randomness
In the service times, one queue can
become empty when the other is not

- This means that one server is idling 18
(l.e., can have unused service) when

It can be doing work

However, in heavy traffic, this should
happen rarely under the join-the-
shortest queue policy

12




State-Space Collapse

For the servers to avoid unnecessarily idling
we need to show g, = g, under JSQ

- What we actually prove is that
E[llg.ll*] < M,
where M does not depend on the heavy-traffic

parameter e = u; + pu, — A

This is called state-space collapse because this
means q; is small compared to g, + g, which is

0 (3) In expectation (why?)

€

13

qd1 = 4>

q.




Upper Bound for JSQ

Set the drift of V(q) = (3, q;)* equal to zero:
E[V(qk + 1)) —E[V(qk))| =0

Why this choice of I/'(q)?

From the state-space collapse result, we expect the queues to behave like a single queue
as in the lower bound; all queues are roughly equal, so they would all hit zero
“simultaneously”

So we expect )}, q; to behave like a single-server queue

14



Drift Equation

- The terms in the drift equation look very similar to the lower bound, except for
the red term below:

(q1(k + 1) + g (k + 1))2 — (q1(k) + q3 (k))2
= 2(‘11(") + Q> (k))(a1(k) + ay(k) — sy (k) — Sz(k))
+(ay (k) + ay (k) — s,.(k) — 5,(K))°
+2(u1(k) + u, (k))(ql(k +1)+qg,(k + 1))
—(us (k) + u, (1))’

- Lower bounding system:

q%(k + 1) — ¢%(k)
= 2q(k)(a(k) — s(k)) + (alk) — s(k))”
+2u(k)q(k + 1) —u?(k)



Using State-Space Collapse

- The terms in the drift equation look very similar to the lower bound, except for
terms of the form:

(CI1(k +1) + qp(k + 1))(“1(") + Uy (k))
Note that g, (k + 1)u,(k) = 0, but g, (k + 1)u,(k) # 0

But, from state-space collapse, q,(k + 1) = g,(k + 1), and thus,

qz(k + Duy (k) = 0

16



Upper Bound for JSQ

- E|V(q(k+1))| —E|V(q(k))| = 0 in steady state yields

IE’(ql(k-+-1)-+-q2(k-+'1))2 _'(Q1(k)'+'QZ(k))2]

= E[2(q1(k) + q2(0)) (ay (k) + ay (k) — s51(k) — 5,(K))]
+E [(a, (k) + az(k) — 5,(k) — 55(0))”]
+E[2(uy (k) + uy (k) (g1 (k + 1) + g, (k + 1))]

—F [(ul (k) + u, (k))2]

. Thus,

Elg; + q2]

E[(a —5)?]

2€

+of

1

€

)

—2€E|qq + q2]
E[(a — s)?]
o(1)

0(1)



Heavy-Traffic Delay Optimality

- Under JSQ,

L 2
Elq, + q2] = Ella = 5) ]+0<1>

2€ €
. This coincides with the lower bound for any policy

D —5)? 1
Elqs + 5] > [(QZ:) L (E)

- JSQ asymptotically minimizes the backlog in heavy traffic

.- By Little’s law, JSQ asymptotically minimizes the average delay in heavy
traffic



Key Steps

Lower Bound
Resource Pooling

Establish State-Space Collapse
Using insight about why the algorithm might achieve the lower bound
We haven't yet discussed how to show state-space collapse

Obtain an Upper Bound

Again using the insight from the lower bound and the state-space collapse to choose an
appropriate function whose drift is equal to zero



State-Space Collapse

(Hajek, 1982)

X Is Markov chain, V(x) is some function (satisfying a certain condition) defined
over the state-space of the Markov chain. If

E(V(Xk+1) — VX)X, = x) < =6,
for V(x) = B, then

lim E (e9V (X)) < M

k—oo

20



A Useful Property of JSQ

. Define W(q) = ||q ||
. Inthe 2-d case, W(q) = % |1 — q3]

. Drift: E[W(q(k + 1)) = W(q(k)) | q(k) = q]

- JSQ:
- If g; > q,, then g,decreases and g, increases, independent of ¢
- Similarly when g, > g,
- Conclusion: Drift is independent of ¢

21



Moments & State-Space Collapse

. E|W(qk +1)) —wW(qk))|q(k) = q] < —6, independent of the heavy-traffic
parameter e

- Following Hajek (1982), this implies the following steady-state estimate:

E(llaLll) = m,
Independent of e

. State-space collapse: Recall that E(};;q;) is Q (i) thus q | Is small compared
to q in heavy-traffic

22



JSQ-MaxWeight for Scheduling with Data
Locality



JSQ-MaxWeight

Task| Type = (1, 2, 4)

local service rate a > ey
remote service rate y Join the Shortest Queue
!,' -------------------------------------------------- “I ::" ~\‘
Local Remote
gueues -0, -0, Q3 ~Qum - Ome O gueue
MaxWelght Weights: aQ,, yQm+1

e iy e G i+



Heavy-Traffic Regime |» |4

- Some servers do not store data, so they
do not have local tasks

Backup servers for peak hours
. Servers with data are overloaded

Example : :
- Server 3 does not have local tasks Lo

- Task types: Type 1 is local to server 1,
and Type 2 is local to server 2

. Servers with local tasks are overloaded:
M>al,>a

- Heavy-traffic parameter: B @ B

e=2a+y— (A +4,) Server 3 does not
have local tasks

Remote
gqueue

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
’f
-
-

-
-
-

P m———— o
[ R
\
ﬁ



Key Steps

Lower Bound
Resource Pooling

Establish State-Space Collapse
Using insight about why the algorithm might achieve the lower bound

Obtain an Upper Bound

Again using the insight from the lower bound and the state-space collapse to choose an
appropriate function whose drift is equal to zero




Universal Lower Bound

M Az

- For any scheduling policy, the backlog is
lower bounded by the queue length in
the system where

- Servers are running at maximum speeds
- The service resource is pooled together e - e

- By the Kingman bound for single queue, @
2 .
E[backlog] > IE[(GZ—ES) | o (g) Lower bounding system

/11+/12: III‘ZCZ-I_V’




JSQ-MaxWeight: What can go wrong?

M Az

- Similar to JSQ, a server can be idling
when there is still unfinished work in the
system

- A server can be working on a remote
task when it has local tasks

- Then it is not running at full speed

|
Q
|
I
@
!
@
|
>
|

- Again, in heavy traffic, these should
happen rarely under the JSQ-
MaxWeight

= e e



State-Space Collapse (v |4

- JSQ tries to balance @, and Q,

- MaxWeight tries to balance aQ, and yQ, T
- Where does the state space collapses to? o T N
0,1 aQq =y0s - QaF
4 ,? - ==
.\ \ Q1 =04 R
emote
q q
gueue
\.
q

>



State-Space Collapse

- When aQ,; = y0Q,, server 1 works on Q,
- Then the system behaves like a JSQ system
- So the queue vector further goes towards

Q1 = 04

The state spgceLoippses to
Qs

>

DR ——




Upper Bound

- Want to prove the system indeed behaves like a JSQ system

- That is to prove Server 1 serves (; most of the time and Server 2 serves Q,
most of the time

- Queue dynamics:

Qmk +1) = Quk) + Ay (k) = Sin(k) + Upn(k),  m=1,2,4

. We prove that (S;(k),S,(k),S4(k)) = (S1(k),S3(k), S4(k)), where S;,(k)’s are
“ideal” service: S; (k) and S, (k) have rate a, S,(k) has rate y



Upper Bound

- Then obtaining the upper bound is similar to JSQ

. Setting the drift of V(q) = (3}, ¢;)* equal to zero yields:

[E[backlog] < El(a =) ] + 0 (1)

2€ €

. Coincides the universal lower bound for any scheduling policy



Heavy-Traffic Analysis for
Continuous-Time Systems

R. Srikant and Weina Wang
University of lllinois at Urbana-Champaign



Outline

. Single Queue in Continuous Time
. Join-the-Shortest-Queue in Continuous Time

Proportionally Fair Bandwidth Sharing (Wang et al, in progress)



Single Queue In Continuous Time



Single Queue In Continuous Time

- Packet arrivals: Poisson process with rate 4 Y

o

. n(t): # packets Load: p = A/u
n - n+ 1 with rate 4
n—-n—1withrate ulgsgy —— pu—uU

. Service time: exponential with mean 1/u |

. Unused service: U =1 —1g,5¢

- Note that
n-U=20



Equivalent Model: One Link, One Flow Type

Flow arrivals: Poisson process with rate 4

Each flow corresponds to the transfer of a file whose size ~ "~
IS exponentially distributed with mean 1/u O O
C=1
. n(t): # of flows
oo Load: p =A/u
. x: bandwidth allocated to each flow, x = {n’ n
0, ifn=0
n = n+ 1 with rate A
—> u—uu

n —» n — 1 with rate nxu

Unused bandwidth: U =1 —nx =1 — 15,50

Note that
n-U=90



Single Queue

- Want to bound E[n(t)] in steady state

O\_/:o
. Set the drift of Lyapunov function V(n) = n* to zero: c—1
E|(n(t + At))2] _E [(”(t))zl Load: p = A/u

= E[An?] =0
. Drift equation:
An? = 2((n+1)? —n?) + (u— ul)((n — 1)? —n?)
=2 —u+Umnm+A+u—uU
=2(p -1 -nu+2U0 -nu+A+pu—uU



Bound on Backlog

An2=2(p—1)-nu+{2U-nuJ+/1+u—uU i

\_/
( C :O
| 2U - ny = OJ C=1
o | Elp—uU] = A:}departure rate = arrival rate Load: p = 4/u

. E[An?] =0 in steady state: 0 = 2(p — 1) - E[n] u + 22,
which yields



Join-the-Shortest-Queue In Continuous Time



JSQ

Continuous-time model A I

-+ __HININ® 14

Route arrivals to the shorter of the two queues, ] e -
breaking ties at random

] A i
(n1,nz) = (ng + 1,np) with rate A1, <p,3 + 7 1y =ny) Unused service
Uy =1-1450

. 2
(ny,ny) = (ng,n, + 1) with rate A1, 53 + E 1, =n,) Uy =1— 1 50)

(nl, le) — (Tll - 1, le) Wlth I'ate M11{1’L1>0} — ‘Lll — /-llUl
(ny,ny) = (ng,n, — 1) with rate p, 14,50y —> w, — u,U,



State-Space Collapse

- Heavy traffic parameter e = uy + u, — 4

. Similar to the discrete-time model, we prove
that n, = n, in heavy traffic

10




Upper Bound for JSQ

Set the drift of V(n) = (n, + n,)* equal to zero:

E[A(n; +1n3)?] =0
- Drift equation
A (ny +ny)? = A((ny +ny + 1)? — (ny +n,)?)
+(uy — pUp + pp — HzUz)((n1 +n, —1)% —(ng + n2)2)
= 2(ny + np)(A — py — py + Uy + ppUs)
+(A+ uy — Uy + 1y — upUs)
=2(ny +ny)(A — py — pp) + 2(ng +ny)(u Uy + ppUz)
+(A+ uy — Uy + py — upUz)

11



Upper Bound for JSQ

A(ng +ny)% =2 +ny)(A— g — ) +[2(n1 + ny) (U Up + ﬂzUz)J
+(A+puy — Uy + py — 1U3)

. Still focus on the term (n, + n,)(u, U, + u,U,)
. NOte that n1U1 — O, but anl + 0
But, from state-space collapse, n, = n,, and thus, n,U; = 0

Then E[A(n; + n,)?] = 0 yields

A 1
E[n, + n,] =E+0<—>

€



Proportionally Fair Bandwidth Sharing



One Link, Two Flow Types

- x,. bandwidth allocated to each flow of type r

Proportionally fair bandwidth allocation:

max n, logx; + n, log x,
{x1,%2}

subject to nixy +nyx, <1
. Solution:
nx; =ny/p, NaXp; =Ny /p,
p = 0: Lagrange multiplier of the constraint
. Stability:
nix1 = P1 NaXa2 = P2
= Ny = P1P, n, = Pp
= (ng,ny) = p(p1,p2)

(1, P2)




State-Space Collapse

nz A

arrival

=%
- ‘."
.
- ‘.‘. 1
% 1
4 o, K
Z 2 o %4 <
O P
o e
1 7 oo
st
Ll o

departure
(p1,p2)

Service rates are proportional to # of flows

When the flow count vector (n,n,) is far from the direction (p4, p»),
the departure rates pull it back



State-Space Collapse

nz A

- Heavy-traffic parameter: e =1—p; — p,
. State space collapse:

Ellln,|l] = o (%)



Dynamics

State transition rates

. A1,
(n{,n,) - (n; + 1,n,) with rate A, C\l-M}:’O
(n,n,) - (n{,n, + 1) with rate A, /,12?*

(nl, nz) — (n1 — 1,Tl2) with rate n1X1Uq
LoadS pl —_ /11/[11

(nl, nz) — (nl,nz — 1) with rate Ny Xo Uy
P2 = A2/ Uz

Unused bandwidth
U=1—-(nyx; +n,x,)
Note that
U>0onlywhenn, =0,n, =0



Bound on Backlog

Set the drift of V(n) = (¢;n, + c,n,)? equal to zero for some ¢, and c,

Drift equation
A (cinq + cny)* = /11((C1(n1 + 1) + cyny)% — (eyny + Cznz)z)

+1, ((clnl + c,(n, + 1))2 — (cynq + cznz)z)
+n1x1,u1((cl(n1 — 1) + cn)* — (g + Cznz)z)

2
TN XU ((C17’l1 + cp(ny — 1)) — (cyng + Cznz)z)

= 2(c1ny + can3) (1A + €45 — ciy Xy — CaNpXo i)
+C2A + c2 Ay + cingx g + CENy Xyl



Drift Analysis

A (c1nq + cyny)* = 2(cyny + Cznz)[(cyh + CoAy — g Xy — Cznzxzﬂz)J

+C2Ay + €3N, + Cingx iy + CoN, XUy

- Weknowthate =1—p;—p,and U =1 —n;x;y —nyx,

1 1
- We should choose ¢; = 02 = to get
1 2

C1A + CoAdy — cnyXq g — CaN Xty = P1 + Py — NyX — NyX,

=—€+U

o NOte that (Cl’l’ll + Cznz)U — O




Drift Analysis

A (c1ny + cany)? =[2(C1n1 + Cz”z)}(ﬁh + oAy — CiMy Xy — CaNpXohy)
+CZA + c5 Ay + cingx g + CEngyxy iy

1

1
We have chosen ¢; = —,¢c, = —
251 Uz

State space collapse: —
na P2

ny _ P1

Then

1 A/ us + A,/ us
P1 )nzz 1/ ug 2/ U5 (ny +1,)

_I__
pP1 Tt P2

c1nq + Con, = <
P211 Uz




Drift Analysis

A (g + cany)? = 2(cing + cny) (A1 + €Ay — Ny Xy — CaNpXoiy)

[+612/11 + 5, + cingxq g + czznzxzuzJ

. E|n,.x,.u,.] = A,., r =1,2: departure rate = arrival rate
- Then

IE[clz)Ll + 622/12 + Clzn1x1ﬂ1 + sznzxzﬂz] — 2(/11/l~l% + Az//“‘%)




Bound on Backlog

A (g + cany)? = 2(cing + cny) (A1 + €Ay — Ny Xy — CaNpXoiy)
+CZAy + c5 Ay + cingx g + CEnyxy i

. Setting E[A(cynq + cyn,)?%] = 0 yields

1 1
[E[n1+n2]=g+o -




Weighted Inner Product

- n: projection of n onto the (half) subspace spanned n, 4
by p

. The Lyapunov function V(n) = (n{/u; + n,/u,)? is the

same as V(n) = |ny||* = (p, n)? when we use the
following weighted inner product

(pm)=(pr p2)| i ()



Extending to General Networks



Two Links, Three Flow Types

Proportionally fair bandwidth allocation:

max ng logxy + nq logx; + n, log x, S 11 N
{x0x1,%2} O O O
subjectto  ngxy +nyx; < G //11?‘//12—;12\‘
NoXo + NyXo < CZ
Solution:
NgXg = "o nx—n1 nx—nz i
0Xo = ) 1X1 = ) 2X2 = —, Ny :
p1 + b2 D1 D2 '
p1, P, Lagrange multipliers of the constraints
- Stable:  ngxe = pg, Nyx1 = p1, NoXy = P b, = (0, p4, py)

n,

bl — (,01;0; pO)
= (ny,n3,n9) = p1(p1,0,p0) + p2(0, p2, po) /

nq



State-Space Collapse

« M. projection onto the cone
spanned by {b4, b,}

- Heavy-traffic regime: py +p; = (1 —€)Cy, po+p, = (1 —¢€)C,
. State space collapse:

Eflln. [[] = o (%) Ellin, /] _



Bound on Backlog

. Still consider the Lyapunov function V(n) = ||n,||”, with the weighted inner

product
! 0 O\
A1
1 ™
(any=(a1 a; ag)| 0 — 0 ||n2
Ay ng
0 O !
\o 0 7

. Setting E[AV(n)] = 0 yields

2 1
[E[n0+n1+n2]zz+0 —



Bound on Backlog in a General Network

. L: # links in the network

- The state space collapses to an L-dimensional cone

. Setting E [A||n"||2] = 0 yields



Insensitivity

The backlog bound

L 1
[E|backlog| = - + 0 <E>

holds for a general class of phase-type distributions for file sizes
This distribution class can approximate any file size distribution arbitrarily closely
Need a more involved weighted inner product

The delay performance of the proportionally fair bandwidth sharing policy
IS Insensitive to the file size distribution
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