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ABSTRACT
We consider the model of a token-based joint auto-scaling
and load balancing strategy, proposed in a recent paper by
Mukherjee, Dhara, Borst, and van Leeuwaarden [4] (SIG-
METRICS ’17), which offers an efficient scalable implemen-
tation and yet achieves asymptotically optimal steady-state
delay performance and energy consumption as the number
of servers N → ∞. In the above work, the asymptotic re-
sults are obtained under the assumption that the queues have
fixed-size finite buffers, and therefore the fundamental ques-
tion of stability of the proposed scheme with infinite buffers
was left open. In this paper, we address this fundamental
stability question. The system stability under the usual sub-
critical load assumption is not automatic. Moreover, the sta-
bility may not even hold for all N . The key challenge stems
from the fact that the process lacks monotonicity, which
has been the powerful primary tool for establishing stabil-
ity in load balancing models. We develop a novel method
to prove that the subcritically loaded system is stable for
large enough N , and establish convergence of steady-state
distributions to the optimal one, as N → ∞. The method
goes beyond the state of the art techniques – it uses an
induction-based idea and a “weak monotonicity” property
of the model; this technique is of independent interest and
may have broader applicability.
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1. INTRODUCTION
Background and motivation. Load balancing and auto-
scaling are two principal pillars in modern-day data centers
and cloud networks, and therefore, have gained renewed in-
terest in past two decades. In its basic setup, a large-scale
system consists of a pool of large number of servers and
a single dispatcher, where tasks arrive sequentially. Each
task has to be instantaneously assigned to some server or
discarded. Load balancing algorithms primarily concern de-
sign and analysis of algorithms to distribute incoming tasks
among the servers as evenly as possible, while using minimal
instantaneous queue length information, and auto-scaling
provides a popular paradigm for automatically adjusting ser-
vice capacity in response to demand while meeting perfor-
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mance targets.
Queue-driven auto-scaling techniques have been widely in-

vestigated in the literature [3, 6] and many more, see [4] for
a detailed discussion. In systems with a centralized queue it
is very common to put servers to ‘sleep’ while the demand is
low, since servers in sleep mode consume much less energy
than active servers. Under Markovian assumptions, the be-
havior of these mechanisms can be described in terms of var-
ious incarnations of M/M/N queues with setup times. Un-
fortunately, data centers and cloud networks with millions of
servers are too complex to maintain any centralized queue,
and it involves prohibitively high communication burden to
obtain instantaneous system information even for a small
fraction of servers.

Motivated by the above, a token-based joint load bal-
ancing and auto-scaling scheme called TABS was proposed
in [4], that offers an efficient scalable implementation and
yet achieves asymptotically optimal steady-state delay per-
formance and energy consumption as the number of servers
N → ∞. In [4], the authors left open a fundamental ques-
tion: Is the system with a given number N of servers stable
under TABS scheme? The analysis in [4] bypasses the issue
of stability by assuming that each server in the system has a
finite buffer capacity. Thus, it remained an important open
challenge to understand the stability properties of the TABS
scheme in the case of infinite buffers.

Key contributions and our approach. In this paper we
address (a) The stability issue for systems under the TABS
scheme with infinite buffers and (b) Examine the asymp-
totic behavior of the system as N becomes large. Analyzing
the stability of the TABS scheme in the infinite buffer sce-
nario poses a significant challenge, because the stability of
the finite-N system, i.e., the system with finite number N
of servers under the usual subcritical load assumption is not
automatic. In fact, even under subcritical load, the sys-
tem may not be stable for all N (see [5, Remark 1]). Our
first main result is that for any fixed subcritical load, the
system is stable for large enough N . Further, in conjunc-
tion with this large-N stability result, which in particular
involves mean-field analysis, we establish convergence of the
sequence of steady-state distributions as N →∞.

The key challenge in showing large-N stability for sys-
tems under the TABS scheme stems from the fact that the
corresponding Markov process lacks monotonicity. It is well-
known that monotonicity is a powerful primary tool for es-
tablishing stability of load balancing models [1, 8] and many
more. We develop a novel method for proving large-N sta-



bility for subcritically loaded systems, and simultaneously
establishing the convergence of the sequence of steady-state
distributions as N → ∞. Our method uses an induction-
based idea, and relies on a “weak monotonicity” property
of the model, as further detailed below. To the best of our
knowledge, this is the first time both the traditional fluid
limit (in the sense of large starting state) and the mean-
field fluid limit (when the number of servers grows large)
are used in an intricate manner to obtain large-N stability
results.

A detailed heuristic roadmap of the above proof argument
is presented in Section 3. This technique is of independent
interest, and potentially has a much broader applicability in
proving large-N stability for non-monotone systems, where
the state-of-the-art results have remained scarce so far.

2. MAIN RESULTS
In this section, first we will describe the system and the

TABS scheme, and then state the main results and discuss
their ramifications. Detailed proof of all the results below
can be found in [5].

Consider a system of N parallel queues with identical
servers and a single dispatcher. Tasks with unit-mean expo-
nentially distributed service requirements arrive as a Poisson
process of rate λN with λ < 1. Incoming tasks cannot be
queued at the dispatcher, and must immediately and irre-
vocably be forwarded to one of the servers. Each server has
an infinite buffer capacity. Under the TABS scheme, once a
server becomes idle, it spends an Exp(µ) time (standby pe-
riod) before turning off. Each incoming task is forwarded to
an idle ‘on’ server if such exists; otherwise, the task goes
to a randomly selected ‘on’ (and busy) server and turn-
ing on of one ‘off’ server is triggered, i.e., its setup period
is started. The setup period takes an Exp(ν) time, after
which the server becomes available (idle on). For the de-
tailed token-based mechanism of the TABS scheme we refer
to [4, 5].

Notation. For the system with N servers, let XN
j (t) de-

note the queue length of server j at time t, j = 1, 2, . . . , N ,
and QN

i (t) denote the number of servers with queue length
greater than or equal to i at time t, including the possible
task in service, i = 1, 2, . . .. Also, let ∆N

0 (t) and ∆N
1 (t)

denote the number of idle-off servers and servers in setup
mode at time t, respectively. It is easy to see that, for
any fixed N , this process is an irreducible countable-state
Markov chain. Therefore, its positive recurrence, which we
refer to as stability, is equivalent to ergodicity and to the
existence of unique stationary distribution. The mean-field
fluid-scaled quantities are denoted by the respective small
letters, viz. qNi (t) := QN

i (t)/N , δN0 (t) = ∆N
0 (t)/N , and

δN1 (t) = ∆N
1 (t)/N . We write qN (t) = (qN1 (t), qN2 (t), . . . )

and δN (t) = (δN0 (t), δN1 (t)). By the symbol ‘
P−→’ we denote

convergence in probability for real-valued random variables.
We now present our main results.

Theorem 1. For any fixed µ, ν > 0, and λ < 1, the
system with N servers under the TABS scheme is stable
(positive recurrent) for large enough N .

Denote by qN (∞) and δN (∞) the random values of qN (t)
and δN (t) in the steady-state, respectively.

Theorem 2. For any fixed µ, ν > 0, and λ < 1, the
sequence of steady states (qN (∞), δN (∞)) converges weakly

to the fixed point (q?, δ?) as N → ∞, where δ?0 = 1 − λ,
δ?1 = 0, q?1 = λ, q?i = 0, for all i ≥ 2.

Note that the fixed point (q?, δ?) is such that the probability
of wait vanishes as N → ∞ and the asymptotic fraction of
active servers is minimum possible, and in this sense, the
fixed point is optimal.

3. PROOFS OF THE MAIN RESULTS
First let us introduce a notion of fluid sample path (FSP)

for finite-N systems where some of the queue lengths are
infinite. We emphasize that this is conventional fluid limit,
in the sense that the number of servers is fixed, but the
time and the queue length at each server are scaled by some
parameter that goes to infinity.

Consider a system of N servers with indices in N , among
which k servers with indices in K ⊆ N have infinite queue
lengths. Now consider any sequence of systems indexed
by R such that

∑
i∈N\KX

N,R
i (0) < ∞, and xN,R

i (t) :=

XN,R
i (Rt)/R, for i ∈ N \K be the corresponding scaled pro-

cesses. Also, for the R-th system, let AN,R
i (t) and DN,R

i (t)
denote the cumulative number of arrivals to and departures
from server i with aN,R

i (t) := AN,R
i (Rt)/R and dN,R

i (t) :=

DN,R
i (Rt)/R being the corresponding fluid-scaled processes,

i ∈ N . We will often omit the superscript N when it is fixed
from the context.

Now for any fixed N , suppose the (conventional fluid-
scaled) initial states converge, i.e., xR(0) → x(0), for some
fixed x(0) such that 0 ≤

∑
i∈N\K xi(0) <∞ and xi(0) =∞

for i ∈ K. Then a set of uniformly Lipschitz continuous
functions (xi(t), ai(t), di(t))i∈N on the time interval [0, T ]
(where T is possibly infinite) with the convention xi(·) ≡ ∞
for all i ∈ K, is called a fluid sample path (FSP) start-
ing from x(0), if for any subsequence of {R} there exists
a further subsequence (which we still denote by {R}) such
that with probability 1, along that subsequence the follow-
ing convergences hold: (i) For all i ∈ N , aRi (·) → ai(·) and
dRi (·)→ di(·), u.o.c. (ii) For i ∈ N \ K, xRi (·)→ xi(·) u.o.c.

The arrival and departure functions ai(t) and di(t) are
well-defined for each queue, including infinite queues. Of
course, the derivative x′i(t) for an infinite queue makes no
direct sense (because an infinite queue remains infinite at
all times). However, we adopt a convention that x′i(t) =
a′i(t)− d′i(t), for all queues, including the infinite ones. For
an FSP, x′i(t) is sometimes referred to as a “drift” of (finite
or infinite) queue i at time t.

We are now in a position to state the key result that es-
tablishes the large-N stability of the TABS scheme.

Proposition 3. The following holds for all sufficiently
large N . For each 0 ≤ k ≤ N , consider a system where
k servers with indices in K have infinite queues, and the
remaining N − k queues are finite. Then, for each j =
1, 2, . . . , N , there exists ε(j) > 0, such that the following
properties hold (ε(j) and other constants specified below, also
depend on N).

(1) For any x(0) such that 0 ≤
∑

i∈N\K xi(0) < ∞ and

xi(0) = ∞ for i ∈ K, there exists T (k,x(0)) < ∞ and
a unique FSP on the interval [0, T (k,x(0))], which has
the following properties:

(i) If at a regular point t,M(t) := {i ∈ N : xi(t) > 0}



with |M(t)| = m > k, then x′i(t) = −ε(m) for all
i ∈M(t).

(ii) For any i ∈ N \ K, if xi(t0) = 0 for some t0, then
xi(t) = 0 for all t ≥ t0.

(iii) T (k,x(0)) = inf {t : xi(t) = 0 for all i ∈ N \ K}.

(2) The subsystem with N − k finite queues is stable.

(3) When the subsystem with N−k finite queues is in steady
state, the average arrival rate into each of the k servers
having infinite queue lengths is at most 1− ε(k).

(4) For any x(0) such that 0 ≤
∑

i∈N\K xi(0) < ∞ and

xi(0) = ∞ for i ∈ K, there exists a unique FSP on
the entire interval [0,∞). In [0, T (k, x(0))], it is as de-
scribed in Statement 1. Starting from T (k, x(0)), all
queues in N \ K stay at 0 and all infinite queues have
drift at most −ε(k).

Although Part 2 follows from Part 1, and Part 4 is stronger
than Part 1, the statement of Proposition 3 is arranged as
it is to facilitate its proof (see the proof idea below).

Proof of Theorem 1. Note that Theorem 1 is a special
case of Proposition 3 when k = 0.

Next we will state a lemma that describes asymptotic
properties of sequence of systems as the number of servers
N → ∞, if stability is given. Its proof involves mean-field
fluid scaling and limits.

Lemma 4. Consider any sequence of systems with N →
∞ and k = k(N) infinite queues such that k(N)/N → κ ∈
[0, 1], and assume that each of these systems is stable. The
following statements hold:

(1) If κ ≥ 1− λ, then qN1 (∞)
P−→ 1 as N →∞.

(2) If κ < 1 − λ, then the limit of the sequence of sta-
tionary occupancy states (qN (∞), δN (∞)) is the dis-
tribution concentrated at the unique equilibrium point
(q?(κ), δ?(κ)), such that q?1(κ) = κ + λ, q?2(κ) = κ,
δ?0(κ) = 1− λ− κ, δ?1(κ) = 0.

Proof of Theorem 2. Given the large-N stability prop-
erty proved in Proposition 3 for k(N) = 0, Theorem 2 is
immediate from Lemma 4.

Proof idea for Proposition 3. The key idea is to use
backward induction in k, starting from the base case k = N .
For k = N , all the queues are infinite, and Parts (1) and (2)
are vacuously satisfied with the convention T (N,x(0)) =
0. Further observe that when all queues are infinite, since
all servers are always busy, each arriving task is assigned
uniformly at random, and each server has an arrival rate
λ and a departure rate 1. Thus, the drift of each server is
−(1− λ) < 0, and thus, ε(N) = 1− λ. This proves (3), and
then (4) follows as well.

Now, we discuss the ideas to establish the backward in-
duction step, i.e., assume that Parts (1)–(4) hold for k ≥
k(N) + 1 for some k(N) ∈ {0, 1, . . . , N − 1} and verify that
the statements hold for k = k(N).

Part (1): The idea is that as long as a conventional fluid-
scaled queue length at some server is positive, it can be
coupled with a system where the corresponding queue length
is infinite. Thus, as long as there is at least one server
with positive fluid-scaled queue length, the system can be

‘treated’ as a system with at least k(N) + 1 infinite queues,
in which case, Part (4) of the backward induction hypothesis
furnishes with the drift of each positive components of the
FSP (in turn, which is equal to the drift of each infinite
queue for the corresponding system).

Part (1) =⇒ Part (2): To prove Part 2, we use the fluid
limit technique of proving stochastic stability as in [2, 7].
Here we show that the sum of the non-infinite queues (of
an FSP) drains to 0. This is true, because by Part (1) each
positive non-infinite queue will have negative drift.

Part (2) + Lemma 4 =⇒ Part (3): This is the only
part where in the proof we use the large-scale asymptotics,
in particular, Lemma 4. The idea here is to prove by con-
tradiction. Suppose Part (3) does not hold for infinitely
many values of N . In that case, it can be argued that there
exists a subsequence {N} and some sequence {k(N)} with
k(N) ∈ {0, 1, . . . , N − 1}, such that when the subsystem
consisting of N − k(N) finite queues is in the steady state,
the average arrival rate into each of the k(N) servers having
infinite queue lengths is at least 1, along the subsequence.
Lemma 4 is then used to arrive at a contradiction. Note
that we can apply Lemma 4 here, because Part (2) ensures
the required stability.

Parts (2), (3) + Time-scale separation =⇒ Part (4):
For this we first claim that the number of arrivals to any
specific infinite queue can be written as a sum of arrivals in
finite-length i.i.d. renewal cycles. Using the strong law of
large numbers (SLLN) we can then show that in the limit
R → ∞ (recall that R is the fluid scaling parameter), the
instantaneous rate of arrival to an specific infinite queue is
given by the average arrival rate when the subsystem with
N − k finite queues is in steady state. Therefore, Part (3)
completes the verification of Part (4).
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