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ABSTRACT

There is considerable interest in the networking community
in explicit congestion control as it may allow the design of
a fair, stable, low loss, low delay, and high utilization net-
work. The Rate Control Protocol (RCP) is an example of
such a congestion control protocol. The current design of
RCP suggests that it should employ two forms of feedback;
i.e. rate mismatch and queue size, in order to manage its
flow control algorithms. An outstanding design question in
RCP is whether the presence of queue size feedback is use-
ful, given the presence of feedback based on rate mismatch.
To address this question, we conduct analysis (stability and
Hopf bifurcation) and packet-level simulations. The analyt-
ical results reveal that the presence of queue size feedback
in the protocol specification may induce a sub-critical Hopf
bifurcation, which can lead to undesirable system behavior.
The analysis is corroborated by numerical computations and
some packet-level simulations. Based on our work, the sug-
gestion for RCP is to only include feedback based on rate
mismatch in the design of the protocol.

1. INTRODUCTION

The Transmission Control Protocol (TCP) is the most
commonly used transport layer protocol, which handles con-
gestion control in the Internet. Currently, TCP uses packet
loss and delay as signals of network congestion. Delay and
loss are damage to packets, and hence this implicit signaling
will impact performance limits. This inherent limitation has
led to the development of congestion control protocols that
could utilize explicit feedback. In the class of algorithms
that employ explicit feedback, the Rate Control Protocol
(RCP) [2, 4, 7] has the potential to offer a fair, stable, low-
loss, low-delay network operating at a high link utilization.
Moreover, RCP continues to receive attention not only in
the currently used host-centric (IP-based) networks [3, 7,
12], but also in future data-centric networking architectures
like Named Data Networking (NDN) [8, 9, 11]. See [15] for
an overview of Named Data Networking. In NDN, there is
no IP address, and all data packets are named with unique
names. Moreover, the data can be fetched from multiple
sources via multiple paths which makes the implicit signal-

*Abuthahir (ee12d207@ee.iitm.ac.in) and Gaurav Raina
(gaurav@ee.iitm.ac.in) are with II'T Madras, Chennai-60036,
India. Thomas Voice (tdvoice@gmail.com) is an indepen-
dent researcher.

Copyright is held by author/owner(s).

Gaurav Raina

Thomas Voice *

ing mechanism used by TCP unreliable in NDN [11]. By us-
ing explicit feedback, congestion control protocols may also
greatly reduce flow completion times [4]. RCP computes
the fair rate using two forms of feedback: rate mismatch and
queue size. From an engineering perspective, two key design
issues in RCP are the following: (i) how new flows may be
admitted at a fair and high starting rate while maintaining
small queues, and (ii) whether the presence of both forms of
feedback is desirable for managing flow control. The issue
of admission management of new flows in RCP was initially
addressed in [7]. This paper addresses the design question
related to the presence of two forms of feedback.

Most queuing systems routinely share information regard-
ing waiting times, or queue lengths, with end systems. Such
information can certainly influence the behavior of end sys-
tems. If such feedback is not instantaneous but is time-
delayed, it can have a significant impact on the stability
and dynamics of the underlying system. In RCP, the feed-
back from routers to end-systems is time-delayed. Thus, we
address the impact of having two forms of feedback on the
stability and dynamical properties of RCP. In [7], a local sta-
bility analysis was conducted for RCP, but such an analysis
was not able to offer any design insights on the use of two
forms of feedback. This provides motivation for some non-
linear analysis, in order to study some additional dynamical
properties of the RCP system. We employ a bifurcation the-
oretic style of analysis where we study the dynamics of the
system as it transits from a stable to an unstable regime.
We conduct our analysis on a proportionally fair variant of
RCP [7]. Analytical results reveal that the presence of queue
feedback in RCP can induce a sub-critical Hopf bifurcation,
for some parameter values. A sub-critical Hopf bifurcation
can result either in large amplitude limit cycles or unstable
limit cycles [13], and hence should be avoided in engineer-
ing applications. Our study suggests that the presence of
both forms of feedback may in fact be detrimental to the
performance of RCP. The analysis is complemented with
numerical computations and some packet-level simulations.

2. MODEL

For our analysis, the setting that we consider is a single
bottleneck link of capacity C, carrying flows with a same
round-trip time 7. To conduct a unified analysis of both the
design choices, we introduce an exogenous non-dimensional
parameter x > 0 which acts as the bifurcation parameter.
In this setting, the non-linear model of a proportionally fair
variant of RCP [7] is
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where y(t) = R(t — 1) is the aggregate load, and p(y) =
y/(2(C — y)) is the mean queue size. Here, R(t) denotes
the fair share rate, a and b are non-negative protocol pa-
rameters. To model RCP which uses only rate mismatch
feedback, b is set to zero in (1). To aim for a particular
target link utilization, say a fraction ~ of the actual link
capacity, C' is replaced with vC'. Then, the system model is
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3. STABILITY ANALYSIS
We outline some results for the local stability of RCP.

3.1 With queue feedback
Let R(t) = R* + u(t), and linearizing (1) about its equi-
librium yields

d .
200 = —=(ra(1+p")/m) u(t = 7), ®3)
where p* = R*/C = (b+ 4 — v/b? + 8b) /4 is the equilibrium
link utilization, and R* denotes the equilibrium rate. Us-
ing results from [10], we obtain the necessary and sufficient

condition for local stability of (1) as
ka(l+p*) < /2, (4)

and the first Hopf bifurcation occurs at ka(1+ p*) = m/2.

3.2 Without queue feedback
The equilibrium of (2) is R* = yC. Linearizing (2) about
R*, we obtain

Eu(t) =—(ka/T)u(t—T). (5)
From [10], the necessary and sufficient condition for local
stability of (2) can be written as

ka < /2. (6)

and the first Hopf bifurcation occurs at ka = 7/2.
We now conduct a Hopf bifurcation analysis to gain some
insights into the system behavior in the unstable regime.

4. HOPF BIFURCATION ANALYSIS

In this section, we analyze the nature of the Hopf bifurca-
tion of RCP in the presence and absence of queue feedback.

4.1 With queue feedback

To analyze the type of the Hopf bifurcation in RCP, we
employ the analysis and results obtained in [10] for a non-
linear delay differential equation. The analytical tools em-
ployed to determine the type of the Hopf bifurcation are
Poincaré normal forms and the center manifold theorem [6,
10]. We first start by noting that the system we consider is
a special case of the following non-linear delay differential
equation

d
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where f has a unique equilibrium denoted by (z*,y").

The Taylor series expansion of (1) about its equilibrium,
up to the third order terms, is
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where, letting f* denote the evaluation of f at its equilib-
rium
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Following the style of analysis in [10], one can get the ex-

pression for the Lyapunov coefficient pz associated with (8):
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After substituting the values of the Taylor series coefficients
in (9), and simplifying, we get
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where the sign of u2 determines the type of the Hopf bifur-
cation. If ps > 0 (u2 < 0), then the Hopf bifurcation is
super-critical (sub-critical). From (10), we can deduce that
only the numerator terms determine the sign of u2. Hence
we plot the variation in the numerator of ps as p* is varied
from 0 to 1. We observe from Figure 1 that ps reaches zero
at p* = 0.6621, and hence the type of the Hopf bifurcation

changes from super-critical to sub-critical after p* = 0.6621.
We now validate this using some numerical examples.
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Figure 1: In the case of RCP with queue feedback, the Hopf
bifurcation is super-critical for p* < 0.6621 and sub-critical
for p* > 0.6621.

Numerical Examples: Let us consider the RCP system
with C = 10 and 7 = 100. For p* = 0.55 (b = 0.736)
and a = 1.0, the system undergoes a Hopf bifurcation at
k = ke = 1. From Figure 1, we can observe that ps > 0
(super-critical) for p* = 0.55. Whereas, for a = 0.827 and
p* =09 (b = 0.022), we have u2 < 0 (sub-critical). To
validate this, numerical solutions obtained using XPPAUT
[5] are shown in Figure 2. For k = 1.05 > k. i.e. after the
bifurcation point, the system gives rise to stable limit cycles



when p* = 0.55. Whereas for p* = 0.9, the limit cycles are
unstable and the solution would eventually blow up.
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Figure 2: Numerical computations illustrating that the sys-
tem which includes queue feedback exhibits a super-critical
Hopf for p* = 0.55, and a sub-critical Hopf for p* = 0.9.

4.2 Without queue feedback

In [14], it has been shown that (2) undergoes the first local
Hopf bifurcation at k = ke, where kca = 7/2. If the Hopf
condition is just violated, the system would lose local stabil-
ity via a super-critical Hopf bifurcation and the amplitude
of the bifurcating limit cycles will be proportional to
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Discussion: The analytical results reveal that the presence
of queue feedback in RCP can induce a sub-critical Hopf bi-
furcation, at high link utilization. A sub-critical Hopf would
lead either to unstable limit cycles, or to limit cycles with a
very large amplitude. Either of these outcomes is detrimen-
tal to system performance and is undesirable in engineering
applications. Hence, it is advisable to go with the design
choice that uses only rate mismatch feedback. See [1] for an
extended version of this paper.

S. PACKET-LEVEL SIMULATIONS

For our simulations, we consider the following set up:
C = 1 Gb/s, number of sources = 100 and 7 = 100 ms
for all the flows. The packet-level simulations are done us-
ing a discrete event RCP simulator (for details, see [7]). The
insights from the analysis suggest that when queue size feed-
back is included, one could expect the emergence of limit cy-
cles with a larger amplitude as compared to the case where
queue feedback is excluded. This insight bears out in sim-
ulations as well, where the case with queue feedback (see
Figure 3(a)) has larger sized limit cycles as compared to the
case without queue size feedback (see Figure 3(b)).
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Figure 3: Simulation traces showing that the system which
includes queue feedback exhibits limit cycles with amplitude
that are much larger than that of RCP which uses only rate
mismatch feedback.

6. CONTRIBUTIONS

The current design specifications of RCP recommend that
it should estimate the fair rate of flows using feedback based
on rate mismatch and queue size. Using a combination of
analysis and packet-level simulations, we highlight that it
would be beneficial to only have feedback based on rate mis-
match. Given the non-linear nature of the model, we showed
that the presence of two forms of feedback may, in fact, lead
to a sub-critical Hopf bifurcation, which is undesirable in
engineering applications. Whereas, in the absence of queue
feedback, the Hopf bifurcation is always super-critical, and
leads to the emergence of stable limit cycles. The results of
our current study favors the design choice which uses feed-
back based only on rate mismatch in the design of RCP.
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