
heSRPT: Optimal Scheduling of Parallel Jobs with
Known Sizes

Benjamin Berg
Carnegie Mellon University

Rein Vesilo
Macquarie University

Mor Harchol-Balter
Carnegie Mellon University

ABSTRACT
Nearly all modern data centers serve workloads which are ca-
pable of exploiting parallelism. When a job parallelizes across
multiple servers it will complete more quickly, but jobs receive
diminishing returns from being allocated additional servers.
Because allocating multiple servers to a single job is ineffi-
cient, it is unclear how best to share a fixed number of servers
between many parallelizable jobs. In this paper, we provide
the first closed form expression for the optimal allocation of
servers to jobs. Specifically, we specify the number of servers
that should be allocated to each job at every moment in time.
Our solution is a combination of favoring small jobs (as in
SRPT scheduling) while still ensuring high system efficiency.
We call our scheduling policy high-efficiency SRPT (heSRPT).

1. INTRODUCTION
In this paper we consider a typical scenario where a data

center composed of N servers is tasked with completing a set
of M parallelizable jobs, where typically M is much smaller
than N. In our scenario, each job has a different inherent size
(service requirement) which is known up front to the system.
In addition, each job can be run on any number of servers
at any moment in time. These assumptions are reasonable
for many parallelizable workloads such as training neural net-
works using TensorFlow [1, 8]. Our objective is to allocate
servers to jobs so as to minimize the mean flow time across
all jobs, where the flow time of a job is the time until the job
leaves the system. What makes this problem difficult is that
jobs receive a concave, sublinear speedup from parallelization
– jobs have a decreasing marginal benefit from being allocated
additional servers (see Figure 1). Hence, in choosing a job to
receive each additional server, one must keep the overall ef-
ficiency of the system in mind. In this paper, we will derive
the optimal policy for allocating servers to jobs when all jobs
follow a realistic sublinear speedup function.

The optimal allocation policy will depend heavily on the
how parallelizable the jobs are. To see this, first consider the
case where jobs are embarrassingly parallel. In this case, we
observe that the entire data center can be viewed as a single
server that can be perfectly utilized by or shared between jobs.
Hence, from the single server scheduling literature, it is known
that the Shortest Remaining Processing Time policy (SRPT)
will minimize the mean flow time across jobs. By contrast,

Copyright is held by author/owner(s).

consider the case where jobs are hardly parallelizable and a
single job receives very little benefit from additional servers.
In this case, the optimal policy is to divide the system equally
between jobs, a policy called EQUI. When jobs are neither
embarrassingly parallel nor completely sequential, the optimal
policy with respect to mean flow time must split the difference
between EQUI and SRPT, favoring short jobs while still re-
specting the overall efficiency of the system.

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0

Number of Servers (k)

S
p

e
e

d
u

p
 s

(k
)

Parameter p

}Overhead
efficient
 region

inefficient
 region

1

0.75

0.5

0.25

Figure 1: A variety of speedup functions of the form s(k) =
kp, shown with varying values of p. When p = 1 we say
that jobs are embarrassingly parallel, and hence we con-
sider cases where 0 < p < 1. Note that all functions in this
family are concave and lie below the embarrassingly par-
allel speedup function (p = 1).

Our Model
Our model assumes that all M jobs are present at time t = 0.
Job i is assumed to have some inherent size xi where, WLOG,

x1 ≥ x2 ≥ . . .≥ xM .

In general we will assume that all jobs follow the same
speedup function, s : R+→ R+, which is of the form

s(k) = kp

for some 0 < p < 1. If a job i of size xi is allocated k servers
for its entire lifetime, it will complete at time

xi

s(k)
.

In general, the number of servers allocated to a job can change
over the course of the job’s lifetime. It therefore helps to think
of s(k) as a rate1 of service where the remaining size of job i
after running on k servers for a length of time t is

xi− t · s(k).
1WLOG we assume the service rate of a single server to be 1.
More generally, we could assume the rate of each server to be
µ , which would simply replace s(k) by s(k)µ in every formula



0

5

10

15

20

25

0 10 20 30

Number of Cores (k)

S
pe

ed
up

 s
(k

) Benchmark

blackscholes

bodytrack

canneal

Figure 2: Various speedup functions of the form s(k) = kp

(dotted lines) which have been fit to real speedup curves
(solid lines) measured from jobs in the PARSEC-3 parallel
benchmarks [9]. The three jobs, blackscholes, bodytrack,
and canneal, are best fit by the functions where p = .89,
p = .82, and p = .69 respectively.

We choose the family of functions s(k) = kp because they sub-
linear and concave and can be fit to a variety of empirically
measured speedup functions (see Figure 2). Similarly, [6] as-
sumes s(k) = kp where p = 0.5.

In general, we assume that there is some policy, P, which
allocates servers to jobs at every time, t. When describing the
state of the system, we will use mP(t) to denote the number of
remaining jobs in the system at time t, and xP

i (t) to denote the
remaining size of job i at time t. We also denote the completion
time of job i under policy P as T P

i . When the policy P is
implied, we will drop the superscript.

We will assume that the number of servers allocated to a job
need not be discrete. In general, we will think of the N servers
as a single, continuously divisible resource. Hence, the policy
P can be defined by an allocation function θθθ

P(t) where

θθθ
P(t) = (θ P

1 (t),θ
P
2 (t), . . . ,θ

P
M(t)).

Here, 0 ≤ θ P
i (t) ≤ 1 for each job i, and ∑

M
i=1 θ P

i (t) ≤ 1 . An
allocation of θ P

i (t) denotes that under policy P, at time t, job
i receives a speedup of s(θ P

i (t) ·N). We will always assume
that completed jobs receive an allocation of 0 servers.

We denote the optimal allocation function which minimizes
mean flow time as θθθ

∗(t). Similarly, m∗(t), x∗i (t), and T ∗i de-
note the corresponding quantities under the optimal policy.

Why Server Allocation is Counter-intuitive
Consider a simple system with N = 10 servers and M = 2 iden-
tical jobs of size 1, where s(k) = k.5, and where we wish to
minimize mean flow time. One intuitive argument would be
that, since everything in this system is symmetric, the optimal
policy would allocate half the servers to job one and half the
servers to job two. Interestingly, while this does minimize the
makespan of the jobs, it does not minimize their flow time. Al-
ternately, a queueing theorist might look at the same problem
and say that to minimize flow time, we should use the SRPT
policy, allocating all servers to job one and then all servers to
job two. However, this causes the system to be very ineffi-
cient. We will show that the optimal policy in this case is to
allocate 75% of the servers to job one and 25% of the servers
to job two. In our simple, symmetric system, the optimal al-
location is very asymmetric! Note that this asymmetry is not
an artifact of the form of the speedup function used. If we
had instead assumed that s was Amdahl’s Law [6] with a par-

allelizable fraction of f = .9, the optimal split is to allocate
63.5% of the system to one of the jobs. If we imagine a set
of M arbitrarily sized jobs, one suspects that the optimal pol-
icy favors shorter jobs, but calculating the exact allocations for
this policy is not trivial.

Why Finding the Optimal Policy is Hard
At first glance, solving for the optimal policy seems amenable
to classical optimization techniques. However, naive applica-
tion of these techniques would require solving M! optimiza-
tion problems (corresponding to each of the possible comple-
tion orders of the jobs), each consisting of O(M2) variables
(corresponding to each job’s allocation between consecutive
departures) and O(M) constraints (which enforce the com-
pletion order being considered). Furthermore, although these
techniques could produce the optimal policy for a single prob-
lem instance, it is unlikely that they would yield a closed form
solution. We instead advocate for finding a closed form solu-
tion for the optimal policy, which allows us to build intuition
about the underlying dynamics of the system.

2. PRIOR WORK
Despite the prevalence of parallelizable data center work-

loads, it is not known, in general, how to optimally allocate
servers across a set of parallelizable jobs. There has been
extensive work from the theoretical computer science com-
munity [7, 4, 5, 2] regarding how to schedule parallelizable
jobs with speedup functions in order to minimize mean flow
time. However, this work has concentrated on competitive
analysis rather than direct optimization. Recently, the perfor-
mance modeling community has considered this problem [3],
but this work only considers jobs with unknown, exponentially
distributed sizes. We therefore present the first closed form
analysis of the optimal policy when parallelizable jobs have
known sizes.

3. MINIMIZING MEAN FLOW TIME
The purpose of this section is to determine the optimal allo-

cation function θθθ
∗(t) which defines the allocation for each job

at any moment in time, t, and minimizes mean flow time. As
previously noted, the space of potential allocation policies is
too large to be amenable to direct optimization. Our approach
is therefore to reduce this search space by proving a series of
properties of the optimal allocation function, θθθ

∗(t) (Theorems
1,2,3,4). These properties will allow us to derive the optimal
allocation function in Theorem 5.

Overview of Our Results
We begin by showing that the optimal allocation does not change
between job departures, and hence it will suffice to consider
the value of the allocation function only at times just after a
job departure occurs. This is stated formally as Theorem 1.

Theorem 1. Consider any two times t1 and t2 where, WLOG,
t1 < t2. Let m∗(t) denote the number of jobs in the system at
time t under the optimal policy. If m∗(t1) = m∗(t2) then

θθθ
∗(t1) = θθθ

∗(t2).



Using just this very mild characterization of the optimal pol-
icy, we can show that the optimal policy completes jobs in
Shortest-Job-First (SJF) order. This is stated in Theorem 2.

Theorem 2 (Optimal Completion Order). The optimal policy
completes jobs in the order

M,M−1,M−2, . . . ,1

and hence jobs are completed in the Shortest-Job-First (SJF)
order.

Since jobs are completed in SJF order, we can conclude that, at
time t, the jobs left in the system are specifically jobs 1,2, . . . ,m(t).

Besides the completion order, the other key property of the
optimal allocation that we will exploit is the scale-free prop-
erty. The scale-free property states that for any job, i, job i’s
allocation relative to jobs completed after job i (i.e. the jobs
larger than job i) remains constant throughout job i’s lifetime.
The scale-free property is stated formally in Theorem 3.

Theorem 3 (Scale-free Property). Let t be a time when there
are exactly i jobs in the system and hence m(t) = i. Consider
any t ′ such that t ′ < t. Then,

θ∗i (t
′)

∑
i
j=1 θ∗j (t

′)
= θ

∗
i (t).

The scale-free property reveals the optimal substructure of the
optimal policy – knowing the correct allocation to each job
when there are M−1 jobs in the system reduces the problem of
finding the correct allocation given M jobs to a single variable
optimization problem.

The final property needed to reduce our search space is the
size-invariant property, given in Theorem 4.

Theorem 4 (Size-invariant Property). Consider any two sets
of jobs, A and B, each containing m(t) jobs at time t. If θθθ

∗
A(t)

and θθθ
∗
B(t) are the optimal allocations to the jobs in sets A and

B at time t, respectively, we have that

θθθ
∗
A(t) = θθθ

∗
B(t).

That is, the allocation function depends only on the number of
unfinished jobs in the system, not their remaining sizes.

This is a counter-intuitive result because one might imag-
ine that the optimal allocation should be different if two very
differently sized jobs are in the system instead of two equally
sized jobs.

Finally Theorem 5 provides the optimal allocation function
which minimizes mean flow time.

Theorem 5 (Optimal Allocation Function). At time t, when
m(t) jobs remain in the system,

θ
∗
i (t) =


(

i
m(t)

) 1
1−p −

(
i−1
m(t)

) 1
1−p 1≤ i≤ m(t)

0 i > m(t)

Note that the optimal allocation to job i is independent of
its remaining size, in accordance with Theorem 4. Given the
optimal allocation function θθθ

∗(t), we can also explicitly com-
pute the optimal mean flow time. This is stated in Theorem 6.

Theorem 6 (Optimal Mean Flow Time). Given a set of M jobs
of size x1 > x2 > .. . > xM , the mean flow time, T ∗, under the
optimal allocation policy θθθ

∗(t) is given by

T ∗ =
1

s(N)M

M

∑
k=1

xk ·
[
ks(1+ω

∗
k )− (k−1)s(ω∗k )

]
where

ω
∗
k =

1(
k

k−1

) 1
1−p −1

∀1 < k ≤M

and

ω
∗
1 = 0

4. CONCLUSION
The optimal allocation policy derived in this paper biases

towards short jobs, but does not give strict priority to these
jobs in order to maintain the overall efficiency of the system.
That is, as stated in Theorem 5,

0 < θθθ
∗
1(t)< θθθ

∗
2(t)< .. . < θθθ

∗
m(t)(t).

We refer to the optimal policy as high efficiency Shortest-Remaining-
Processing-Time or heSRPT.

5. REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis,

J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. Tensorflow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[2] K. Agrawal, J. Li, K. Lu, and B. Moseley. Scheduling
parallelizable jobs online to minimize the maximum flow
time. SPAA ’16, pages 195–205. ACM, 2016.

[3] B. Berg, J.P. Dorsman, and M. Harchol-Balter. Towards
optimality in parallel scheduling. ACM POMACS
(SIGMETRICS), 1(2):40:1 – 40:30, 2018.

[4] J. Edmonds. Scheduling in the dark. Theoretical
Computer Science, 235:109–141, 1999.

[5] J. Edmonds and K. Pruhs. Scalably scheduling processes
with arbitrary speedup curves. SODA ’09, pages
685–692. ACM, 2009.

[6] M. D. Hill and M. R. Marty. Amdahl’s law in the
multicore era. Computer, 41:33–38, 2008.

[7] Sungjin Im, Benjamin Moseley, Kirk Pruhs, and Eric
Torng. Competitively scheduling tasks with intermediate
parallelizability. ACM Transactions on Parallel
Computing (TOPC), 3(1):4, 2016.

[8] Sung-Han Lin, Marco Paolieri, Cheng-Fu Chou, and
Leana Golubchik. A model-based approach to
streamlining distributed training for asynchronous sgd. In
MASCOTS 2018, pages 306–318. IEEE, 2018.

[9] X. Zhan, Y. Bao, C. Bienia, and K. Li. PARSEC3.0: A
multicore benchmark suite with network stacks and
SPLASH-2X. ACM SIGARCH Computer Architecture
News, 44:1–16, 2017.


	Introduction
	Prior Work
	Minimizing Mean Flow Time
	Conclusion
	References

