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1. INTRODUCTION

Load-dependent closed queueing networks are difficult to
approximate since their analysis requires to consider state-
dependent service demands. Commonly employed evaluation
techniques, such as mean-value analysis, are not equally
efficient in the load-dependent setting, where mean queue-
lengths are insufficient alone to recursively determine the
model equilibrium performance.

In this paper, we contribute to addressing this problem by
obtaining novel solutions for the normalizing constant of state
probabilities in the load-dependent setting. For single-class
load-dependent models, we provide the first explicit exact
formula for the normalizing constant that applies to models
with arbitrary load-dependent rates, while retaining O(1)
complexity with respect to the total population size. From
this result, we derive two novel integral forms for the normal-
izing constant in multiclass load-dependent models, which
involve integration in the real and complex domains. The
paper also illustrates through experiments the computational
gains and accuracy of the obtained expressions.

2. REFERENCE MODEL

We focus on closed multiclass queueing network models
that admit a product-form solution [2], such as closed net-
works including —/G1I/1 processor sharing queues, — /M /k
first-come first-served queues with identical service rates,
and —/GI /oo delay nodes. Service time distributions are
assumed to have a rational Laplace-Stieltjes transform.

The queueing network model under study is assumed to
have M single-server queues and R job classes. Indexes k, i
are used to denote queues (k,i = 1,..., M), while indexes
r, s are used to indicate classes (r,s = 1,..., R). Each class
is populated by N, jobs. Thus, the total number of jobs in
the network is N = N1 + ...+ Ng.

Recall that the state space of the Markov process underly-
ing a network satifying the above assumptions may be written
as S(N) = {n = (n11,...,nar) | e > 0,500 npr =
N, }, in which we focus only on the marginal states where
ng,» denotes the total number of class-r jobs residing at
queue k, either queueing or receiving service.

For queue k, we denote by 6, the mean service demand
of class 7, which is the product of the mean number of visits
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with the mean service time of class r jobs at queue k. If
queue k is load dependent then the service demand of the
job in service is scaled by a load-dependent factor a(ng) if
the queue has ny = Zle ny,» resident jobs.

With the above definitions, the equilibrium distribution of
the network is then given by [2]
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where N = (N, ..., Ng). The normalizing constant H(N)
in (1) ensures that state probabilities sum to unity.

Throughout the paper we assume arbitrary load-dependent
factors ay(nk) with ax(0) = 1. Some common assignments
are the following: (i) Single-server load-independent sta-
tion: ax(nk) = 1; (i) Station with s, homogeneous servers:
ak(nk) = min(sk, nk); (iii) Delay node: ai(nig) = ng; (iv)
Flow-equivalent server (FES): ak(ni) = X (n), where X (ny)
is the mean throughput of the subsystem modelled by the
FES when this has a population of nx resident jobs. Note
that the flow-equivalent server case only applies to single
class models (R =1).

The rest of this paper is organized as follows. Section 3
introduces our exact results for load-dependent models. Inte-
gral forms stemming from these developments are obtained
in Section 4 and illustrated on representative examples.

3. EXACT SOLUTIONS

3.1 Single-class normalizing constant

For a single-class load-dependent closed queueing network
with M nodes, let sk, 1 < s < N, be the smallest index
for which there exist a constant ci such that ax(nkg) = c,
Vnr > sk. Also, note that the population vector reduces
to a scalar N = N;j. We are now ready to give an explicit
solution for the normalizing constant in single-class closed
queueing networks with load-dependent stations.

THEOREM 3.1. The normalizing constant of a single-class
load-dependent closed queueing network with M stations may
be written as
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and in which s = (s1,...,sm) and g(N — v) is the single-
class normalizing constant of a load-independent model with
demands o, = 0 /ak(sk) and a population of N — v jobs.

Note that the above result is explicit since a closed-form
expression for the load-independent normalizing constants
g(N — v) has been derived in [4, Eq.(3.12)] and can be
computed in O(1) time and space under a growth of the
population N. As such, to the best of our knowledge,
equation (2) provides for the first time an explicit solution
for load-dependent single-class closed queueing networks that
is O(1) with respect to the population size.

3.2 Multiclass normalizing constant

We now derive a result showing that the normalizing con-
stant H(IN) of a multiclass load-dependent model with class-
independent scaling factors ay(ni) may be rewritten as a
weighted sum of normalizing constant of single class models.
In the theorem below, we use the following definition of n-th
order finite difference [7]: AL f(n) = Zf:;o(—l)N_"(]Z)f(n).
This may be generalized to the multivariable case as AL,
which denotes R finite differences of orders N = (N1, ..., Ng)

on the variables n = (n1,...,ng).

THEOREM 3.2. In a multiclass closed queueing network
with M load-dependent queueing stations and R classes, the
normalizing constant may be written as

S ()

(3)
where n = (n1,...,nR), n = Zf‘:l nr, and in which Hp(N)
is the normalizing constant of a single-class model with M
load-dependent stations, population N = Zle N, demands
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H(N) =

Op,n = Zle nyOk,» and scaling factors ar(nk) identical to
the ones used in the multiclass model.

From (3) we readily see that an explicit form can be obtained
for H(IN') once we replace Hy, (N) by (2). The computational
complexity of (3), instantiated with (2), is O([[r2, sk NT)
time and O(1) space. This form offers computatlonal advan-
tages over the load-dependent mean value analysis (MVA-
LD), which is the standard method to assess queueing net-
works with multi-server stations, since MVA-LD complexity
is O(Nmaz NT) time and O(Npa:VNE) space [5], where
Nmaz = max, N,. Note in particular that space complexity
is reduced to O(1) with (3).

4. INTEGRAL FORMS

In this section, we develop a integral form for H(IN) over
the complex and real domains. The first form is based on
the Norliind-Rice integral and computes the normalizing
constant H(IN) using R contour integrals in the complex
domain. Conversely, the second integral form is on the
M-dimensional unit simplex. The two integral forms have
complementary computational properties, with the first form
being more efficient than the second form for large number
of stations M, while the second form being more efficient for
large number of classes R.

4.1 Norlund-Rice integral

Note first that the single-class normalizing constant g(IN)
appearing in (2) can be written as the divided difference [6]

g(N) = [0, ..

Because divided differences admit an integral form over the
unit simplex through the Hermite-Genocchi formula [1, 6],
the last expression may also be rewritten as
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where Ty = {(u1,...,un) :ur + ... +un = 1,up > 0} is

the unit simplex in M dimension.

A well-known property of divided differences is that they
may be equivalently computed using the Norlund-Rice inte-
gral [7]

n! f(z)
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where ¢ denotes the imaginary unit and the contour of inte-
gration encircles the poles at 0,1,...,n.

Note that (3) computes H(IN) using R independent finite
difference operators. Since the integrand is a normalizing
constant, it is a multivariate polynomial in the demands.
Therefore H,(N) is polynomially bounded and holomorphic,
which allows us to apply the Norlund-Rice integral to (3)
and write
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where z = (z1,...,2zr). This expression can be evaluated
numerically for H(IN) by ensuring that integration contour
for each variable z, encircles the poles O, ..., N,.

To illustrate the above result on a special case, let us
consider a model with R = 2 classes, where we can denote
h(z1,22) = Hz(N), with z = (z1,22). When the radius
of integration grows asymptotically large, it is possible to
show that the circle integral may be rewritten as the double
integral

H(N 2m /ﬁ ﬁh (t1),v(t2))
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where v(t) = cos(t) + isin(t), 7' (t) = —sin(t) + icos(t).
The value of h(z1,22) can be calculated at each point using

2 with the load-independent normalizing constant formula
in [4, Eq.(3.12)].

4.2 Simplex integral

Let s, and ¢ (vi) be defined as in Theorem 3.1, we can
now give a second integral form for H(IN) based on the finite
difference expression we have derived earlier.

THEOREM 4.1. In a network with multiclass load-dependent
queues the normalizing constant can be written as

1

HIN) = qm
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(7)
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Figure 1: Simplex integral on two load-dependent
models with varying number of servers.
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Figure 2: Results - logistic sampling

where ogr = Opr/ar(sk), v = (v1,...
t=(t1,...,tx),

Ny
and we define f(to,t,u) = Hfil (Zszl ok, (th +t0uk)> .

4.2.1 Example

In this example, we consider three models with M = 2
multi-server stations and R € {2, 4,6} classes. The demands
are set to Ox,» = k- 7. We consider two scenarios differing
for the number of servers at the two stations: balanced
(s1 = s2 = 2) and unbalanced (s1 =1, s2 = 8).

We first use Grundmann-Moller (GM) cubature rules to
exactly integrate over the unit simplex [6]. The total pop-
ulation of jobs is equal to N = 16 and we set N, = [N/R].
Integral form (7) is evaluated with a GM rule of degree N.
The results shown in Figure 1 illustrate the much greater
scalability of the integral form (7) compared to the standard
MVA-LD algorithm [5] as the number of classes increases.
For larger populations, MVA-LD quickly experience mem-
ory bottlenecks since space complexity is quadratic in the
population size, whereas it becomes O(1) in the simplex
integral.

We also illustrate the computation of the contour integral
(6). The integral is evaluated using a step size 6 = 7 /k
in which we increase the number of integration points k.
Tables 1 and 2 illustrate the accuracy in approximating the
normalizing constant as the number of integration points
increases up to k = 512. The exact values of H(IN) are
obtained using the convolution algorithm. Both tables refer
to the case R = 2 and show that with as little as 32 points the

Table 1: Norlund—Rice: Balanced servers, R = 2

Integration Integral Time
Step size Value Error [s]
27 /16 21255742.539 7.5 0.09
27 /32 20448824.691 3.4 0.34
27 /64 20092657.586 1.6 1.26
2m /128 19926396.988 0.8 5.43
27 /256 19846222.427 0.4 18.22
2w /512 19806874.082 0.2 81.72
H(N): 19768018.359 Exact

Table 2: Norlund—Rice: Unbalanced servers, R = 2

Integration Integral Time
Step size Value Error [s]

27 /16 26178327.051 7.5%  0.08
27 /32 25184536.348 3.4%  0.30
2w /64 24745885.054 1.6%  1.16
2w /128 24541120.421 0.8%  4.93
2w /256 24442378.359  0.4% 19.13
2m /512 24393917.391  0.2%  75.40
H(N): 24346063.132  Exact

Norlund-Rice method obtains an approximation for H ()
having less than 5% error.

4.2.2 Logistic sampling

The unit simplex integral in (7) may also be estimated
numerically by adapting the logistic sampling in [6] to the
integrand in (7). An open source implementation has been
made available in the JMVA tool, part of the Java Modelling
Tools suite [3]. The mode of the integrand is obtained, after
an additive logistic transformation, by running a conjugate
gradient search, implemented using multiprecision arithmetic
to avoid numerical issues associated with finite differences
and normalizing constants.

The effectiveness of logistic sampling has been tested
against random instances with the following characteristics:
number of classes R € [1, 2]; number of stations M € [2,3];
class populations N, € [1,5]; number of servers in station 2
s; € [1,2]; random service demands 6k, € [0,1]. The average
errors are shown in Figure 2, indicating a rapid decrease in
the magnitude of the errors as the number of samples grows.
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