An Online Algorithm for Smoothed Online Convex
Optimization

Gautam Goel

ABSTRACT

We consider Online Convex Optimization (OCO) in the set-
ting where the costs are m-strongly convex and the online
learner pays a switching cost for changing decisions between
rounds. We show that the recently proposed Online Bal-
anced Descent (OBD) algorithm is constant competitive in
this setting, with competitive ratio 3+ O(1/m), irrespective
of the ambient dimension. We demonstrate the generality of
our approach by showing that the OBD framework can be
used to construct competitive a algorithm for LQR control.

1. INTRODUCTION

In this paper we study the problem of smoothed online
convez optimization (SOCO), a variant of OCO where the
online learner incurs a switching cost for changing its actions
between rounds. More concretely, the online learner plays
a series of rounds ¢t = 1...7T. In each round, the learner
receives a convex loss function f;, picks a point z; from a
convex action space x C R?, and pays a hitting cost fi(x;)
as well as a switching cost c(x¢,x¢—1) which penalizes the
learner for changing its action between rounds.

This problem was first introduced in the context of the dy-
namic management of service capacity in data centers [14],
where the switching costs represent the performance and
wear-and-tear costs associated with changing server config-
urations. Since then, SOCO has attracted considerable in-
terest, both theoretical and applied, due to its use in dozens
of applications across learning, distributed systems, net-
working, and control, such as speech animation [11], video
streaming [9], management of electric vehicle charging [10],
geographical load balancing [13], and multi-timescale con-
trol [6]. See [5] for an extensive list of applications.

Unfortunately, despite a large and growing literature, all
existing results identifying competitive algorithms for SOCO
either (i) place strong restrictions on the action space, (ii),
place strong restrictions on the class of loss functions, or (iii)
require algorithms to make use of predictions of future cost
functions. For example, a series of papers [14], [2] developed
competitive algorithms for one-dimensional action spaces.
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Until earlier this year there were no known algorithms that
were competitive for SOCO beyond one dimension without
requiring the use of predictions. Finally, [5] presented the
first algorithm that is constant-competitive beyond one di-
mension, but the algorithm was shown to be constant com-
petitive only in the case of polyhedral cost functions, a re-
strictive class that does not include most loss functions used
in machine learning. Beyond this result, the most general
positive results all assume predictions of future cost func-
tions are available, e.g. [13], [3], [4], [12].

The existing work on SOCO highlights a crucial open
question: Does there exist a competitive algorithm for high-
dimensional SOCO problems with cost functions that capture
standard losses for online learning problems, e.g., logistic
loss or least-squares loss?

In this paper we answer this question by proving that the
recently introduced Online Balanced Descent (OBD) algo-
rithm is constant-competitive for SOCO with strongly con-
vex costs. Additionally, highlighting the importance of the
class of strongly convex costs, we show that the OBD frame-
work can be used to construct the first competitive algo-
rithm for LQR control, which was not possible with previous
approaches.

Related work. There is a vast literature on OCO; for
a recent survey see [8]. OCO with switching costs was first
studied in the scalar setting in [14], which used SOCO to
model dynamic right-sizing in data centers and gave a 3-
competitive algorithm. In subsequent work, [2] improved
the competitive ratio to 2, also in the scalar setting. The
first constant-competitive algorithm beyond one dimension
was given in [5], which introduced the OBD framework and
showed that it was competitive for SOCO with polyhedral
costs. The results in this paper highlight that OBD is also
constant-competitive for strongly convex cost functions, a
class that is particularly important for learning and control
applications, and is wholly disjoint from the class of polyhe-
dral cost functions when the minimizer of the cost function
is zero.

2. SMOOTHED ONLINE CONVEX OPTI-
MIZATION

An instance of SOCO consists of a convex action set x C
R?, an initial point z¢ € X, a sequence of non-negative con-
vex costs fi...fr : RY - RT, and a non-negative function
¢: R x R - RT. In each round ¢, the online learner ob-
serves the cost function f;, picks a point x:, and pays the
sum of the hitting cost fi(x¢) and the movement or switch-
ing cost c(x+,x+—1). The switching cost acts as a regularizer,



penalizing the online learner for changing its decisions be-
tween rounds. The goal of the online learner is to minimize
its aggregate cost so as to approximate the offline optimal
cost:

T
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More generally, x; could be matrix-valued and f;, ¢ could be
functions on matrices. Note that we make no restrictions
on the sequence of cost functions fi ... fr other than strong
convexity; they could be adversarial, or even adaptively cho-
sen to hurt the online learner.

We emphasize that SOCO differs from OCO in two impor-
tant ways. Firstly, unlike in OCO, the costs incurred in each
round of SOCO depend on the previous choice, coupling the
online learner’s decisions across rounds. Secondly, the online
learner can observe the cost function f; before picking x:.
This is a standard assumption in the SOCO literature, e.g.
in [2], [14], [5] and isolates the complexity of SOCO onto the
coupling across timesteps due to the switching costs instead
of the uncertainty in the costs.

In this paper, we measure the performance of OBD in
terms of its dynamic regret and competitive ratio. The dy-
namic regret is defined as
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Here x1...xr are the points picked by the online learner
and z7 ...z} are the offline optimal points. We note that
this is a more natural performance metric for SOCO than
static regret, since the main motivation for SOCO is to un-
derstand the effects of switching costs on online learning. In
contrast, in the static regret setting the comparator never
moves and hence incurs no switching cost, making it a less
ideal performance metric for SOCO.

Instead of using an additive metric the competitive ratio
uses a multiplicative metric:
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We note that [1] showed that, in general, no online al-
gorithm can have both sublinear static regret and constant
competitive ratio.

Much attention has been focused on the setting where
the switching cost is a norm: c(z¢,zi—1) = |2t — xe—1]|,
e.g. [14], [2]. Note that in the one-dimensional setting, all £,
norms are identical, making the choice of norm somewhat
vacuous. The first algorithm to work beyond the one di-
mensional setting was proposed in [5], which considered a
setting where the switching cost is given by the Euclidean
distance and the loss functions are polyhedral, meaning that
they at grow at least linearly as one moves away from the
minimizer.

We instead focus on the setting where the cost functions
fi... fr are m-strongly convex with respect to the Euclidean
norm and the switching cost is quadratic:

1
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In Section ??, we show that OBD can be used with many
important loss functions, such as the least-squares loss and

Algorithm 1 Online Balanced Descent (OBD)

1: fort=1,...,T do

2: Receive f;. Let v, be the minimizer of f;.

3 Let z(l) = My (x¢—1). Initialize [ = fi(v¢). Here K}
is the l-sublevel set of f;, i.e., Ki = {x | fi(z) <1}

4:  Increase l. Stop either when z(¢) = v; or 3|z(l) —
ﬂ?tle% =Bl

5. Set ¢ = z(l).

6: end for

the ¢5 regularized logistic loss, none of which could be han-
dled by previous work.

We assume that the domain x is all of R?. Note that
this presents no real restriction, since we can always define
fi(z) = oo for all = ¢ x. The objective becomes
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Notation. We use || - || to denote the £2 norm. We often

use H; and M, to denote the hitting cost fi;(z:) and the
movement cost % ||z — 1], respectively. The offline costs
H; and M; are defined analogously. We let ALG denote
the total cost incurred by OBD across all rounds and define
OPT to be the analogous offline cost. We let v; denote the
minimizer of the cost function f;.

3. A COMPETITIVE ALGORITHM

Our main technical result shows that a recently proposed
algorithm, Online Balanced Descent (OBD), is constant com-
petitive for SOCO problems with strongly convex cost func-
tions.

OBD was introduced in [5], where it was analyzed for the
class of polyhedral costs. The detailed workings of OBD are
summarized in Algorithm 1. The key insight of OBD is to
exploit the full geometry of the level sets of the current cost
function f; when choosing the point x; in such a way as to
take switching costs into account.

OBD works by iteratively projecting the previously cho-
sen point onto a level set of the current cost function. The
level set K; picked by OBD is the level set such that the
switching cost incurred while traveling from x:—1 to K; is
equal to Bfi(x:), where z; is the projection onto K; and
B is the balance parameter which can be tuned to get dif-
ferent performance guarantees. We note that OBD can be
efficiently implemented via a binary search over the level
sets [5].

We can now state our main result, a bound on the com-
petitive ratio of OBD for strongly convex costs.

Theorem 1. OBD is competitive for the problem (1) for all
B> %4 Furthermore, if B is set to be 2+ %, the competitive
ratio of OBD is at most 3 + O(1/m), irrespective of the
ambient dimension.

We note that [5] proved a bound on the competitive ra-
tio of OBD of the form 3 + O(1/a) where o measures the
“steepness” of the costs. While this superficially resembles
the bound in Theorem 1, we emphasize that the settings are
quite different; their work applied to the class of polyhedral
cost functions while we focus on strongly convex cost func-
tions. In the case where the cost functions have minimum



value zero these classes are wholly disjoint. We are led to
consider strongly convex costs due to the fact many common
learning and control problems have loss functions that are
strongly convex (e.g., see Section 5). Until this paper, there
existed no competitive algorithms for SOCO problems with
strongly convex costs.

4. LINEAR QUADRATIC REGULATOR (LQR)

CONTROL

We give an application from the controls community. Con-
sider the classical problem of LQR control:
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with dynamics given by
Ti4+1 = Al}t + BUt + wy

Here u is a control action, x a state variable, and Q;, R are
assumed to be positive definite. Usually, the noise incre-
ments w; are assumed to be i.i.d. Gaussian, and the goal is
to design a control policy to minimize the expected cost. In-
stead of an in-expectation result, we can use OBD to design
a controller with a strong pathwise guarantee, with no dis-
tributional or boundedness assumptions on the noise. The
key observation is that the LQR problem can be rewritten
as a SOCO problem after a change of variables. We focus
on the setting where A = I, i.e. the system is stationary in
the absence of noise or control actions.

Corollary 1. Suppose that A =1 and B is invertible, and
the matrices Q¢ each have their lowest eigenvalue bounded
below by A > 0. The LQR problem can be rewritten as a
SOCO problem, and the competitive ratio of OBD is

Note that Amin(B) can be interpreted as a lower bound
on the gain of the control action u; intuitively, systems with
high control gain are easier to regulate, since each control ac-
tion gets amplified. Similarly, it is intuitive that as Apmaz(R)
decreases the competitive ratio improves, since R controls
the cost incurred by using the controller.
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