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ABSTRACT
The drift method was recently developed to study perfor-
mance of queueing systems in heavy-traffic [1]. It has been
used to analyze several queueing systems, including some
where the Complete Resource Pooling (CRP) condition is
not satisfied, like the input-queued switch [4]. In this paper
we study the generalized switch operating under MaxWeight
using the drift method. The generalized switch is a queueing
system that was first introduced by [5], and can be thought
of as extension of several single-hop queueing systems, such
as the input-queued switch and ad hoc wireless networks.
When the CRP condition is not satisfied, we prove that
there is a multidimensional state space collapse to a cone
and we compute bounds on a linear combination of the queue
lengths that are tight in heavy-traffic. This work general-
izes some of the results obtained by [1] and the results from
[4], since the queueing systems studied there are particular
cases of the generalized switch.

1. INTRODUCTION
In this paper we focus on the generalized switch, which

was first introduced in [5] to model a wide class of single hop
queueing systems in the literature. A generalized switch
is a discrete time system with a finite number of queues,
each with its own (independent) arrival process. Packets
that arrive into each queue wait for service. The schedul-
ing constraints in the system dictate that only a subset of
queues can be served in each time slot. In each time slot,
the scheduling problem is to pick the set of queues that are
active. A well-known scheduling algorithm is MaxWeight,
where the weight of each schedule is the sum of the lengths of
the corresponding queues and the schedule with maximum
weight is selected. Moreover, there are external factors that
influence the set of feasible service rate vectors. We group
all these factors in a single variable, that we call channel
state. This channel state varies with time, and we model it
as a random process which is independent of the arrival and
the queue lengths processes.

The generalized switch can be considered as an exten-
sion of some general stochastic processing networks, such
as the input queued switch, ad hoc wireless networks, par-
allel service systems, virtual machine scheduling for cloud
computing etc. The input-queued switch is a discrete time
model with n input ports and n output ports. Packets ar-
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rive to each input port with a predetermined output port
where they should be processed. Each output port can pro-
cess at most one packet in each time slot, and the processing
rate is fixed and equal to one time slot. A usual model is
to think of the switch as having n2 queues, i.e. in each in-
put port there is one separate queue for each output port.
There are physical constraints that only allow the switch to
send at most one packet from each input port and to pro-
cess at most one packet in each output port, in each time
slot. These constraints represent interference constraints as
mentioned above for the generalized switch, and since they
are fixed for all time slot, in the input-queued switch the
channel state is fixed over time. The input-queued switch is
one of the simplest single hop queueing systems that does
not satisfy the CRP condition.

In this paper we focus on heavy-traffic analysis of the
generalized switch. Heavy-traffic means that one takes a
sequence of queueing systems where the arrival rates vector
approaches the boundary of the capacity region. This regime
has been extensively used in the literature, in the context
of many different queueing systems. One of its advantages
is that, in the limit, the system can be approximated by
a queueing system in a lower-dimensional state space. This
phenomenon is known as Stace Space Collapse (SSC). If SSC
occurs into a one-dimensional subspace, then the system is
said to satisfy the Complete Resource Pooling (CRP) con-
dition. Heavy-traffic analysis of queueing systems was first
developed by Kingman in the ’60s, where he obtained the
steady-state distribution of the scaled waiting time in heavy-
traffic. The approach used by Kingman is based on using
diffusion limits. The idea of this approach is to scale time
and the queue lengths, to prove process level convergence
to a Reflected Brownian Motion. The limiting distribution
is then computed and interchange of limits must be shown
to complete the proof. In the literature, this approach has
been extensively used in a variety of queueing systems that
satisfy the CRP condition, such as the load balancing sys-
tem. More general systems such as the input queued switch,
generalized switch, ad hoc wireless networks etc are studied
only when the CRP condition is satisfied. Systems that do
not satisfy the CRP condition are studied only when the
resulting distribution has a product form, such as the band-
width sharing network [3]. However the generalized switch
does not exhibit such a product form stationary distribution
in general.

More recently, the drift method has been first developed
in [1], where the authors proposed a new notion of SSC that
uses Lyapunov drift arguments. The idea of this new no-



tion of SSC is to decompose the vector of queue lengths in
two vectors, according to the heavy-traffic behavior of the
queueing system. Then, SSC is proved by upper bounding
the norm of one of these vectors, which represents the error
of the heavy-traffic approximation. Once SSC is established,
one computes asymptotically tight bounds on the moments
of scaled linear combinations of the queue lengths. These
bounds are computed by setting to zero the drift of a care-
fully chosen test function in steady-state. In order to obtain
tight bounds in the heavy-traffic limit, it is essential that
the test function captures the geometry of SSC.

In [1], the drift method is developed for queueing systems
that satisfy the CRP condition, such as a load balancing sys-
tems, ad hoc wireless networks and the generalized switch
under CRP condition. Further, in [2] the authors use a
novel view of the drift method to compute the steady-state
distribution in heavy-traffic of the vector of queue lengths
in systems that satisfy the CRP condition. When the CRP
condition is not satisfied, the drift method has also been suc-
cessfully used to compute the heavy-traffic limit of the first
moment of the sum of the queue lengths. In particular, [4]
applied this approach to an input-queued switch operating
under MaxWeight.

In this paper, we use the drift method for the generalized
switch when SSC occurs into a multi-dimensional subspace.
The main contribution of this paper is to provide SSC proof
and computation of asymptotically tight bounds on a linear
combination of the queue lengths for one of the most general
single hop queueing systems in the literature.

2. MODEL
Consider a generalized switch as described above. Arrivals

to the ith queue form a sequence {ai(k) : k ≥ 1} of i.i.d.
random variables, for each i ∈ [n], where [n] = {1, . . . , n}.
For each i ∈ [n], let λi = E [ai(1)], σ2

ai = Var [ai(1)] and
assume ai(1) is bounded with probability 1 for all i ∈ [n].
The arrival processes to different queues are independent.
Let si(k) be the offered service to queue i in time slot k,
i.e. the number of packets from the ith queue that would be
processed if there are enough packets in line. Let ui(k) be
the unused service in queue i in time slot k, i.e. the difference
between the offered service and the number of packets that
are actually processed in time slot k.

The interference constraints among servers depend on the
channel state, that we model as a sequence of i.i.d. random
variables {J(k) : k ≥ 1} where J(k) represents the channel
state in time slot k. If J(k) = j, all feasible service rate vec-

tors are contained in the set S(j). Assume that the random
variables J(k) have finite state space J and that for each

j ∈ J the set S(j) is finite. Therefore, the service rate vec-
tors are bounded. Let ψ be the probability mass function
of J(1), i.e. for each j ∈ J we have ψj = P [J(1) = j].

In each time slot model, the order of events in one time
slot is as follows. First, the channel state is observed, second
a schedule is selected, third arrivals occur, and at the end
of each time slot services occur. Therefore, the dynamics of
the queues are as follows. For each k ≥ 1 and i ∈ [n]

qi(k + 1) = qi(k) + ai(k)− si(k) + ui(k). (1)

In queue i, the unused service ui(k) is nonzero only when
the respective service rate is greater than the number of

packets in line (including arrivals). Therefore,

qi(k + 1)ui(k) = 0 ∀k ≥ 1 ∀i ∈ {1, . . . , n}. (2)

However, if i 6= j, qi(k + 1)uj(k) is not necessarily zero.
In each time slot, the scheduling problem is solved using

MaxWeight algorithm, i.e. the schedule with the longest
total queue length is selected. Formally, if J(k) = j then

s(k) ∈ arg max
x∈S(j)

〈q(k),x〉.

Ties are broken at random.
It is well known that the capacity region of the generalized

switch is

C =
∑
j∈J

ψj ConvexHull
(
S(j)

)
(3)

and that MaxWeight is throughput optimal, i.e. the gener-
alized switch operating under MaxWeight is positive recur-
rent for all λ in the interior of C. Since the sets J and S(j)

∀j ∈ J are finite, then C is a polytope in Rn+. To exploit its
geometry, we describe the capacity region C as follows

C =
{
x ∈ Rn : 〈c(`),x〉 ≤ b(`) , ` = 1, . . . , L

}
, (4)

where L is the minimum number of hyperplanes needed to
describe C. Without loss of generality, we assume ‖c(`)‖ = 1,

c(`) ≥ 0 and b(`) > 0 for all ` ∈ [L]. For each ` ∈ [L], let F (`)

be the `th facet of C, i.e. F (`) =
{
x ∈ C : 〈c(`),x〉 = b(`)

}
.

By definition of the capacity region and since we are using
MaxWeight algorithm to select schedules, it is clear that
s(k) does not necessarily belong to the capacity region C.
To overcome this difficulty, we use the following lemma.

Lemma 1. Consider a generalized switch operating under
MaxWeight as described above. Then,

E [ 〈q(k), s(k)〉| q(k) = q] = max
x∈C
〈q,x〉.

For each ` ∈ [L] and j ∈ J define the maximum c(`)-
weighted service rate available when channel state is j as
b(j,`) = maxx∈S(j)〈c(`),x〉. Observe that, if the channel

state is fixed (i.e. if J only has one element), then b(j,`) =

b(`). For each ` ∈ [L], let {B`(k) : k ≥ 1} be an i.i.d.
process, independent of the queue lengths process, that sat-

isfies P
[
B`(1) = b(j,`)

]
= ψj and let σ2

B`
= Var [B`(1)]. The

processes {B`(k) : k ≥ 1} are independent across `.
Now we describe how we model heavy-traffic in this paper.

We fix a vector ν in the boundary of C and we consider a
set of generalized switches operating under MaxWeight as
described above, parametrized by ε ∈ (0, 1). The heavy-
traffic limit is the limit as ε ↓ 0 and, as ε gets small, the
vector of mean arrival rates approaches ν.

Formally, we consider a set of generalized switches oper-
ating under MaxWeight, parametrized by ε ∈ (0, 1) in the

following way. We let q(ε)(k), a(ε)(k), s(ε)(k) and u(ε)(k)
be the vectors of queue lengths, arrivals, offered services
and unused services, respectively, in time slot k, in the sys-
tem parametrized by ε. The parametrization is such that the

vector of mean arrival rates be λ(ε) = E
[
a(ε)(1)

]
= (1−ε)ν.

Therefore, λ(ε) belongs to the interior of C for each ε and, as
ε ↓ 0, λ(ε) approaches the boundary of the capacity region.

Heavy-traffic analysis of the generalized switch was stud-
ied in [1] when the vector ν is in the interior of a facet of



the capacity region C. In that case, SSC occurs into a one-
dimensional subspace and the CRP condition is satisfied.
In this paper, we focus on the case when the vector ν lives
in the intersection of facets. We let P ⊂ [L] be the maxi-
mal set of indexes of the facets that intersect at ν. Then
ν ∈

⋂
`∈P F

(`). We say P is maximal in the sense that if
˜̀∈ [L] \ P , then

⋂
`∈P∪{˜̀} F

(`) = ∅.
In the next section we present our results and a sketch of

our proofs.

3. ASYMPTOTICALLY TIGHT BOUNDS
In this section we apply the drift method to compute

bounds on a linear combination of the queue lengths, that
are tight in heavy-traffic. We start with SSC. Define

H =

{
x ∈ Rn : x =

∑
`∈P

α`c
(`) , α` ∈ R ∀` ∈ P

}
and K = H ∩ R+. Observe that K is a cone on R+ and
that H is the subspace generated by the cone K. For each

ε ∈ (0, 1), let q
(ε)

‖K(k) be the projection of q(ε)(k) on K and

q
(ε)
⊥K(k) = q(ε)(k) − q(ε)‖K(k). Similarly, let q

(ε)

‖H(k) be the

projection of q(ε)(k) on H and q
(ε)
⊥H(k) = q(ε)(k) − q(ε)‖H(k).

The queueing system is stable for each ε ∈ (0, 1), so we
define q, q‖K, q⊥K, q‖H and q⊥H to be steady-state vectors
to which q(k), q‖K(k), q⊥K(k), q‖H(k) and q⊥H(k) converge
in distribution, respectively. In the next proposition we state
SSC formally.

Proposition 1. Consider a generalized switch operating un-
der MaxWeight, parametrized by ε as described in Section 2.
Then, for each m = 1, 2, . . . there exists a finite constant

Mm such that E
[
‖q(ε)⊥H‖

m
]
≤ E

[
‖q(ε)⊥K‖

m
]
≤Mm.

SSC is a consequence of Proposition 1 for the following
reason. As ε ↓ 0, ‖q‖ goes to infinity (this can be seen from
the proof of Theorem 1). Therefore, Proposition 1 implies
that as ε gets small, we can approximate q ≈ q‖K because
all the moments of ‖q⊥K‖ are bounded above.

Proof sketch of Proposition 1. The first inequality holds be-
cause K ⊂ H by definition. The proof of the second inequal-
ity is based on Lemma 1 in [1], which is a Foster-Lyapunov
type of argument. Basically, we prove that
E [‖q⊥K(k + 1)‖ − ‖q⊥K(k)‖ | q(k) = q] is bounded above by
a negative number if ‖q⊥K‖ is large and that
|‖q⊥K(k + 1)‖ − ‖q⊥K(k)‖|1{q(k)=q} is bounded with prob-
ability one for all q.

The main contribution of our work is the following theo-
rem.

Theorem 1. Consider a set of generalized switches operat-
ing under MaxWeight, indexed by the heavy-traffic parame-
ter ε ∈ (0, 1) as described in Section 2. Then,∣∣∣∣∣E [〈q(ε),ν〉]− 1

2ε

(
n∑

r,t=1

h2
r,tσ

2
at +

n∑
r=1

∑
`∈P

h̃2
r,`σ

2
B`

)∣∣∣∣∣ ≤ K(ε),

where εK(ε) converges to 0 as ε ↓ 0; for each r, t ∈ {1, . . . , n}
hr,t is the (r, t)th element of the projection matrix on H,

H
4
= C(CTC)−1CT with C a matrix with columns

[
c(`)
]
`∈P

;

and for each r ∈ {1, . . . , n} and ` ∈ P , h̃r,` is the (r, `)th

element of H̃
4
= C(CTC)−1.

Thus, in the heavy-traffic limit as ε ↓ 0, we have

lim
ε↓0

εE
[
〈q(ε),ν〉

]
=

1

2

(
n∑

r,t=1

h2
r,tσ

2
at +

n∑
r=1

∑
`∈P

h̃2
r,`σ

2
B`

)

Proof sketch of Theorem 1. For ease of exposition, in this
proof we omit the dependence on ε of the variables and we
add a line on top of them when we work in steady-state.

We set to zero the drift of V (q) =
∥∥∥q‖H∥∥∥2 and we obtain

T1 = T2 − T3 + T4,

where

T1
4
=2E

[
〈q‖H, s‖H − a‖H〉

]
, T2

4
= E

[∥∥a‖H − s‖H∥∥2] ,
T3
4
=E

[∥∥u‖H∥∥2] and T4
4
= 2E

[
〈q+‖H, u‖H〉

]
.

Using the geometry of the subspace where SSC occurs and
Lemma 1, we obtain

T1 =2εE
[
〈q‖H,ν〉

]
+O(

√
ε)

T2 =

n∑
r,t=1

h2
r,t

(
σ(ε)
at

)2
+

n∑
r=1

∑
`∈P

h̃2
r,`σ

2
B`

+ ‖ν‖2ε2 +O(ε)

|T3| is O(ε) and |T4| is O(ε
1
8 ),

which completes the proof. Observe that the bounds arise
from the absolute values in the terms T3 and T4.

4. CONCLUSION
In this paper we used the drift method as developed in [1]

to compute asymptotically tight bounds for the generalized
switch operating under MaxWeight when SSC occurs into
a multidimensional space. Our results generalize the work
in [1, 4], where the drift method was used to study heavy-
traffic performance of queueing systems that are particular
cases of the generalized switch.
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