Simple Near-Optimal Scheduling for the M/G/1

Ziv Scully
Computer Science Department
Carnegie Mellon University

zscully@cs.cmu.edu

ABSTRACT

We consider the problem of preemptively scheduling jobs to
minimize mean response time of an M/G/1 queue. When
the scheduler knows each job’s size, the shortest remaining
processing time (SRPT) policy is optimal. Unfortunately,
in many settings we do not have access to each job’s size.
Instead, we know only the job size distribution. In this setting,
the Gittins policy is known to minimize mean response time,
but its complex priority structure can be computationally
intractable. A much simpler alternative to Gittins is the
shortest expected remaining processing time (SERPT) policy.
While SERPT is a natural extension of SRPT to unknown
job sizes, it is unknown how close SERPT is to optimal.

We present a new variant of SERPT called monotonic
SERPT (M-SERPT) which is as simple as SERPT but has
provably near-optimal mean response time at all loads for
any job size distribution. Specifically, we prove the mean
response time ratio between M-SERPT and Gittins is at
most 3 for load p < 8/9 and at most 5 for any load. This
makes M-SERPT the only scheduling policy known to be
constant-competitive with Gittins.

1. INTRODUCTION

Scheduling to minimize mean response time in a preemp-
tive M/G/1 queue is a classic problem in queueing theory.
When job sizes are known, the shortest remaining processing
time (SRPT) policy is known to minimize mean response
time. Unfortunately, determining or estimating a job’s exact
size is difficult or impossible in many applications, in which
case SRPT is impossible to implement. In such cases we only
learn jobs’ sizes after they have completed, which can give
us a good estimate of the distribution of job sizes.

When individual job sizes are unknown but the job size
distribution is known, the Gittins policy minimizes mean
response time [1, 5]. Gittins has a seemingly simple structure:

e Based on the job size distribution, Gittins defines a rank
function that maps a job’s age, which is the amount of
service it has received so far, to a rank, which denotes
its priority [12].

e At every moment in time, Gittins applies the rank
function to each job’s age and serves the job with the
best rank.

Unfortunately, hidden in this simple outline is a major ob-
stacle: computing the rank function from the job size distri-
bution requires solving a nonconvex optimization problem
for every possible age. Although the optimization can be

Copyright is held by author/owner(s).

Mor Harchol-Balter
Computer Science Department
Carnegie Mellon University

harchol@cs.cmu.edu

Alan Scheller-Wolf
Tepper School of Business
Carnegie Mellon University

awolf@andrew.cmu.edu

simplified for specific classes of job size distributions [1], it
is intractable in general.

In light of the difficulty of computing the Gittins rank
function, practitioners turn to a wide variety of simpler
scheduling policies, each of which has good performance in
certain settings. Three of the most famous are the following:

o First-come, first-serve (FCFS) serves jobs nonpreemp-
tively in the order they arrive.

— FCFS generally performs well for low-variance job
size distributions and is optimal for those with the
decreasing mean residual lifetime property [1, 10].

o Foreground-background (FB) always serves the job of
minimal age, splitting the server evenly in case of ties.

— FB generally performs well for high-variance job
size distributions and is optimal for those with the
decreasing hazard rate property [1, 4, 9, 10].

e Processor sharing (PS) splits the server evenly between
all jobs currently in the system.

— PS has appealing insensitivity and fairness prop-
erties which ensure passable mean response time
for all job size distributions, but it is only optimal
in the trivial special case of exponential job size
distributions.

These are a few of the many scheduling heuristics studied
over the past several decades. Unfortunately, there are no
optimality guarantees for any policy other than Gittins that
hold across all job size distributions. In fact, each of FCFS,
FB, and PS can have arbitrarily large mean response time
ratio compared to Gittins.! We therefore ask:

Is there a simple scheduling policy that achieves
near-optimal mean response time for all job size
distributions?

One candidate for such a policy is shortest expected remain-
ing processing time (SERPT). Like Gittins, SERPT assigns
each job a rank as a function of its age, but SERPT has
a much simpler rank function: a job’s rank is its expected
remaining size. That is, if the job size distribution is X, then
under SERPT, a job’s rank at age a is

TSERPT(Q) = E[X —a | X > a},

where lower rank means better priority. Intuitively, it seems
like SERPT should have low mean response time because it
prioritizes jobs that are short in expectation, analogous to
what SRPT does for known job sizes. SERPT is certainly
much simpler than Gittins, as shown in Table 1.1.
e For discrete job size distributions with n support points,
Gittins’s rank function can be piecewise linear with

1For PS and FB, this happens in the heavy-traffic p — 1 limit [7].

Table 1.1: Scheduling Policy Comparison

Poricy COMPUTATION PERFORMANCE
Discrete Continuous

Gittins Q(n?) intractable optimal

SERPT O(n) tractable unknown

M-SERPT O(n) tractable 5-competitive

Q(n?) segments, thus taking Q(n?) time to compute,
while SERPT takes O(n) time to compute.

e For continuous job size distributions, computing Git-
tins’s rank function at a single age a requires solving
a nonconvex optimization problem whose objective in-
volves numerical integration, while SERPT needs just
numerical integration.

1.1 Challenges

SERPT is intuitively appealing and simple to compute, but
does it have near-optimal mean response time? This question
is open: there is no known bound on the performance gap
between SERPT and Gittins. To be precise, letting

E[Tseret(X)]

CSERPT(X) = E[TGittinS(X)]

be the mean response time ratio between SERPT and Gittins
for a given job size distribution X, there is no bound on

competitive ratio of SERPT = sup Csgrpr(X).
X

This competitive ratio is difficult to bound because we have
to consider all possible job size distributions X.

In fact, until recently it was unknown how to compute
CserpT(X) even given a specific job size distribution X. This
changed with the introduction of the SOAP technique [12],
which can analyze the mean response time of any scheduling
policy that can be specified by a rank function. We can use
SOAP to numerically compute Cserpr(X) for any given job
size distribution X. However, SOAP does not give a bound
on SERPT’s competitive ratio, which requires considering
all possible X.

One might hope to derive a general algebraic expression for
Cserp7(X) using SOAP. While this is possible in principle,
the resulting expression appears intractable. To deal with
this, our strategy is to design a new scheduling policy that
captures the essence of SERPT but has a more tractable
mean response time expression.

1.2 Our Contribution: M-SERPT

In this paper we introduce a new policy called monotonic
SERPT (M-SERPT) that is simple to compute and has
provably near-optimal mean response time. Like Gittins and
SERPT, we specify M-SERPT using a rank function. Roughly
speaking, M-SERPT has the same rank function as SERPT,
except a job’s rank never improves:

rm-serpT (@) = Jmax rserpT(D).

We prove that M-SERPT is 5-competitive, meaning its
mean response time is at most 5 times that of Gittins. This
makes M-SERPT the first scheduling policy known to be
constant-competitive with Gittins. The competitive ratio is
even smaller at lower system loads. For example, M-SERPT

is 3-competitive for load p < 8/9. M-SERPT achieves this
near-optimal mean response time with a rank function that
is as simple to compute as SERPT’s (Table 1.1).

One might wonder how M-SERPT’s performance compares
to SERPT. In numerical investigations, which we omit for
lack of space, we have found them to have comparable mean
response time, with each performing better than the other
for some job size distributions. In fact, both have mean
response time within about 10% of Gittins’s outside of a few
pathalogical job size distributions. Of course, our competitive
ratio proof only applies to M-SERPT, but we conjecture that
SERPT is also constant-competitive.

We state our main result in Theorem 3.3. Its proof, which
we omit for lack of space, is in the full version of this work [13].

1.3 Related Work

In this paper we consider minimizing mean response time
in the setting of an M/G/1 queue with unknown job sizes.
We are not aware of prior work on competitive ratios in
this exact setting, but there is prior work in related settings,
which we review below.

We begin with the M/G/1 with known job sizes. Wierman
et al. [14] prove that all scheduling policies in a class called
SMART are 2-competitive for mean response time, where the
baseline for this setting is SRPT [11]. All SMART policies
use job size information, so they cannot be applied to our
setting of unknown job sizes. Proving competitive ratios
in our setting is significantly more challenging because the
scheduling policies involved, namely M-SERPT and Gittins,
have much more complicated mean response time formulas
than SRPT and the SMART class [12].

We now move to settings with unknown job sizes. For
such settings, Kalyanasundaram and Pruhs [6] propose the
randomized multilevel feedback (RMLF) policy to achieve low
mean response time. RMLF has been studied in two settings:

e In the worst-case setting in which job sizes and ar-
rival times are chosen adversarially, RMLF has mean
response time O(logn) times that of SRPT, where n is
the number of jobs in the arrival sequence [3, 6], which
is the best possible performance in this setting [8].

e In the stochastic GI/GI/1 setting, Bansal et al. [2]
prove that as the system load p approaches 1,

E[Trvie] 1
ETorer] _O(IOgip)' (1.1)

These results are different from ours in two important ways.
First, the results do not prove constant competitive ratios:
they give asymptotic ratios that become arbitrarily large
in the n — oo and p — 1 limits, respectively. We show
that M-SERPT is constant-competitive at all loads p, even
in the p — 1 limit. But perhaps the non-constant ratio is
unsurprising in light of the second difference: the results
compare RMLF with SRPT, not Gittins, even though job
sizes are unknown. This is because the optimal policies for
the worst-case and GI/GI/1 settings are not known, so SRPT
is the only baseline available for comparison. In contrast, in
the M/G/1 setting we know Gittins is optimal, so we directly
compare M-SERPT to Gittins in our competitive analysis.

2. SYSTEM MODEL AND NOTATION

We consider scheduling in an M/G/1 queue where jobs
have unknown size. We write A for the arrival rate and X for
the job size distribution, so the system load is p = AE[X]. We

assume p < 1. Jobs may be preempted at any time without
delay or loss of work. We write E[T] for the mean response
time of the system.

The scheduling policies we study in this paper are all
SOAP policies [12]. A SOAP policy is one that is specified
by a rank function

T:R20—>R

which maps a job’s age, the amount of time it has been
served, to its rank, or priority. All SOAP policies have the
same core scheduling rule: always serve the job of minimum
rank, breaking ties in first-come, first served order.

Definition 2.1. The Gittins policy is the SOAP policy with
rank function
b —
F(t)dt
= inf ffai()f
b>a F(a) — F(b)
Definition 2.2. The monotonic SERPT (M-SERPT) policy
is the SOAP policy with increasing rank function

TGittins(a)

rm-serpT (@) = Joax rserpT(D) = or?baz(aE[X —b| X >0

3. COMPETITIVE ANALYSIS

In this section we outline our competitive analysis of
M-SERPT. See the full version of this work for proofs [13],
which we omit here for lack of space.

In their analysis of SOAP policies, Scully et al. [12] split
mean response time into two parts: mean waiting time E[Q)]
and mean residence time E[R]. Roughly speaking, a job’s
waiting time is the time from arrival until it is first served,
and a job’s residence time is the time from that first service
until completion.?

Our approach is to bound M-SERPT’s mean waiting and
residence times separately. The first step is to compare the
mean waiting times of M-SERPT and Gittins.

Lemma 3.1. M-SERPT’s mean waiting time is bounded by

E[E[QGittins]~

2
Qm-serpT] < m
The second step is to prove an upper bound on the mean
residence time under M-SERPT.
Lemma 3.2. M-SERPT’s mean residence time is bounded by

1 1
E[Rum-serprT] < E[Qm-sereT] + (; log E)E[X]

The last step is to prove a lower bound on the mean
residence time under Gittins. For our purposes, two weak
bounds based on prior work suffice:

e A job’s residence time is at least its size, so

E[RGittins} 2 E[X] .

e Wierman et al. [14] give the following lower bound on
the mean response time of SRPT, which in turn is a
lower bound on the mean response time of Gittins:

1 1
E[TGittins} > E[TSRPT] > (; log m)E[X]

Combining these bounds with Lemmas 3.1 and 3.2 bounds
the competitive ratio of M-SERPT compared to Gittins.

2The formal definitions of waiting and residence times are more
complicated than this rough explanation, but this suffices to
explain our method. See Scully et al. [12] for details.

E[Tu-serpT]
E[TGittins]

5

bound

N W

0 -t —T> P
0 8/9 1

Figure 3.1: Bound on Mean Response Time Ratio

Theorem 3.3. M-SERPT’s competitive ratio is bounded by

4
0 < p < 0.9587
1+VI—p <p
E[Tu-sereT] 1 1
"E[Tewn] —log —— . < _
E[Tittins) PR 0.9587 < p < 0.9898

1+ 0.9898 < p < 1.

4
1+v/1-p
Figure 3.1 illustrates the bound as a function of load p.
Concretely, M-SERPT is 3-competitive for load p < 8/9 and
5-competitive for all loads.

References

(1] S. Aalto, U. Ayesta, and R. Righter. On the Gittins index in
the M/G/1 queue. Queueing Systems, 63(1):437-458, 2009.

[2] N. Bansal, B. Kamphorst, and B. Zwart. Achievable per-
formance of blind policies in heavy traffic. Mathematics of
Operations Research, 43(3):949-964, 2018.

[3] L. Becchetti and S. Leonardi. Nonclairvoyant scheduling to
minimize the total flow time on single and parallel machines.
Journal of the ACM (JACM), 51(4):517-539, 2004.

[4] H. Feng and V. Misra. Mixed scheduling disciplines for net-

work flows. In ACM SIGMETRICS Performance Evaluation

Review, volume 31, 36-39. ACM, 2003.

J. C. Gittins, K. D. Glazebrook, and R. Weber. Multi-armed

Bandit Allocation Indices. John Wiley & Sons, 2011.

(6] B. Kalyanasundaram and K. R. Pruhs. Minimizing flow time
nonclairvoyantly. In Proceedings 38th Annual Symposium on
Foundations of Computer Science, 345-352. IEEE, 1997.

[7] B. Kamphorst and B. Zwart. Heavy-traffic analysis of so-
journ time under the foreground-background scheduling pol-
icy. arXiv preprint arXiv:1712.03853, 2017.

[8] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant

scheduling. Theor. Comput. Sci., 130(1):17-47, 1994.

R. Righter and J. G. Shanthikumar. Scheduling multiclass

single server queueing systems to stochastically maximize the

number of successful departures. Probability in the Engineer-

ing and Informational Sciences, 3(3):323-333, 1989.

[10] R. Righter, J. G. Shanthikumar, and G. Yamazaki. On
extremal service disciplines in single-stage queueing systems.
Journal of Applied Probability, 27(2):409-416, 1990.

[11] L. Schrage. A proof of the optimality of the shortest remaining
processing time discipline. Operations Research, 16(3):687—
690, 1968.

[12] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf. Soap:
One clean analysis of all age-based scheduling policies. Proc.
ACM Meas. Anal. Comput. Syst., 2(1):16:1-16:30, Apr. 2018.

[13] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf. Simple
near-optimal scheduling. 2019. URL https://ziv.codes/
pdf/mama2019-long-scully.pdf.

[14] A. Wierman, M. Harchol-Balter, and T. Osogami. Nearly
insensitive bounds on SMART scheduling. In ACM SIGMET-
RICS Performance Evaluation Review, volume 33, 205-216.
ACM, 2005.

[5

9

https://ziv.codes/pdf/mama2019-long-scully.pdf
https://ziv.codes/pdf/mama2019-long-scully.pdf

	Introduction
	Challenges
	Our Contribution: M/SERPT
	Related Work

	System Model and Notation
	Competitive Analysis

