
Communication-Aware Scheduling of
Precedence-Constrained Tasks

Yu Su
Caltech

suyu@caltech.edu

Xiaoqi Ren
Google

xiaoqiren@google.com

Shai Vardi
Purdue University

svardi@purdue.edu
Adam Wierman

Caltech
adamw@caltech.edu

Yuxiong He
Microsoft

yuxhe@microsoft.com

ABSTRACT
Jobs in large-scale machine learning platforms are ex-

pressed using a computational graph of tasks with precedence
constraints. To handle such precedence-constrained tasks
that have machine-dependent communicaton demands in
settings with heterogeneous service rates and communication
times, we propose a new scheduling framework, General-
ized Earliest Time First (GETF), that improves upon state-
of-the-art results in the area. Specifically, we provide the
first provable, worst-case approximation guarantee for the
goal of minimizing the makespan of tasks with precedence
constraints on related machines with machine-dependent
communication times.

1. INTRODUCTION
Within large-scale machine learning platforms, machine

learning workflows are expressed via a computational graph,
where jobs are made up of tasks, represented as vertices.
Edges in the graph simultaneously indicate a precedence re-
lationship and the communication needed between the tasks.
This “precedence graph” abstraction allows data scientists
to quickly develop and incorporate modular components
into their machine learning pipeline (e.g., data preprocessing,
model training, and model evaluation) and then easily specify
a workflow.

How these precedence-constrained tasks are scheduled
across machines is crucial to the performance of machine
learning platforms. This scheduling problem is known to
be very challenging: both the goal of partitioning the jobs
across machines and of scheduling the jobs among a group
of machines are NP-hard [7]. Hence, one can only hope to
develop approximation algorithms and/or heuristics.

The task of scheduling a job made up of precedence-
constrained tasks is classical and has been studied for more
than fifty years, starting with the work of Graham [3]. The
most classical version of this scheduling problem focuses on
scheduling n precedence-constrained tasks on m identical
parallel machines to minimize the makespan, the time until
the last task completes. Graham showed that a simple list
scheduling algorithm can find a schedule of length within
a factor of two of the optimal, i.e., that list scheduling is a
(2− 1/m)-approximation algorithm. This result is still the

Copyright is held by author/owner(s).

best guarantee known for this simple setting. However, this
setting is too simplistic in two important ways: (i) machines
are not identical in modern platforms and (ii) communication
between tasks is a crucial factor in modern platforms.

Addressing these two issues has been the goal of the field
since Graham’s initial result fifty years ago. Since that time,
considerable progress has been made on generalizations to
heterogeneous machines. The focus has been on (uniformly)
related machines, a model where each machine i has a speed
si, each task j has a size wj , and the time to run task j
on machine i is wj/si. Under the related machine model,
a sequence of results in the 1980s and 1990s culminated
in a result that showed how to use list scheduling algo-
rithms in combination with a partitioning of machines into
groups with “similar” speeds in order to achieve an O(logm)-
approximation algorithm [1]. A breakthrough happened in
2017 when the idea of partitioning machines was adapted
further and combined with a variation of list scheduling to
obtain a O(logm/ log logm)-approximation algorithm [6].

While there has been significant progress in the direction
of generalizing from identical machines to heterogeneous
machines, this progress has not extended to the goal of incor-
porating communication costs. The state-of-the-art result for
the incorporation of communication costs is from [4], which
studies machine-dependent communication costs in the set-
ting of identical machines. In this context, a greedy algorithm
called Earliest Time First (ETF) has been shown to provide

schedules with a makespan bounded by (2−1/m)OPT(i) +C,

where OPT(i) is the optimal schedule length when ignor-
ing communication time and C is the maximum amount of
communication of a chain (path) in the precedence graph.
However, the analysis for the case of identical machines in
[4] has proven difficult to generalize. As a result, outside of
the context of identical machines, there has been no progress
in the thirty years since [4].

In this paper, we propose a new scheduling framework
Generalized Earliest Time First (GETF) and prove that, in
the case of related machines and machine-dependent com-
munication times, it computes a makespan that is at most
of length O(logm/ log logm)OPT(i) + C, where C is the
amount of communication time in a chain (path) in the
precedence graph. This result has impact both theoretically
– it addresses a long-standing open problem – and practi-
cally – these schedulers can handle large, complex prece-
dence graphs in systems with heterogeneous machines and
machine-dependent processing times.

1

2. PROBLEM FORMULATION
We study a model that generalizes Q|prec, ci,j |Cmax by

additionally including machine-dependent communication
times. Specifically, we consider the task of scheduling a job
made up of a set V of n tasks on a heterogeneous system
composed of a set M of m machines with potentially different
processing speeds and communication speeds. The tasks
form a directed acyclic graph (DAG) G = (V,E), in which
each node j represents a task and an edge (j′, j) between
task j and task j′ represents a precedence constraint. We
interchangeably use node or task, as convenient. Precedence
constraints can be denoted by a partial order ≺ between
two nodes of any edge. For instance, j′ ≺ j means that
task j can only be scheduled after task j′ completes. The
processing demand of task j is wj processing units, and the
amount of data to be transmitted between task j′ and task
j is represented by the edge weight wj′,j of (j′, j).

The system is heterogeneous in two aspects: processing
speed and communication speed. For processing speed, we
consider the classical related machines model: a machine i
has speed si, and it takes wj/si uninterrupted time units for
task j to complete on machine i. On the other hand, the
communication speed si′,i between any two machines i′, i
is heterogeneous across different machine pairs. Machine-
dependent communication speeds are crucial for capturing
issues such as data locality and the difference between intra-
rack and inter-rack communication. We index the machine to
which task j is assigned to by h(j). If i = h(j) and i′ = h(j′),
then communication time between task j′ and j in the DAG
is wj′,j/si′,i.

For simplicity, we consider a setting where the machines
are fully connected to each other, so any machine can commu-
nicate with any other machine. The results can be extended
to the case where machines are not fully connected in a
straightforward manner. We also assume that the DAG is
connected, otherwise it can be viewed as multiple DAGs. Ad-
ditionally, our model assumes that each machine (processing
unit) can process at most one task at a time, i.e., there is
no time-sharing. Further, the machines are assumed to be
non-preemptive, i.e., once a task starts on a machine, the
scheduler must wait for the task to complete before assign-
ing any new task to this machine. This is appropriate for
machine learning platforms because, in practice, interrupt-
ing a task and transferring it to another machine can cause
significant processing overhead and communication delays
due to data locality [5].

The goal of the scheduler in our model is to minimize the
makespan of the job, denoted by Cmax, which is the time
when the the final task in the DAG completes. Minimizing
makespan for jobs with precedence constraints is known to
be NP-complete [2], and thus we aim to design a polynomial-
time algorithm that computes an approximate optimal sched-
ule. We say that an algorithm is a ρ-approximation algorithm
if it always produces a solution with an objective value within
a factor of ρ of optimal in polynomial time.

Our main results use two important concepts. First, our re-
sults provide bounds in terms of OPT(i), which is the optimal
schedule length obtained when ignoring the communication
delays. Note that OPT(i) is a lower bound of the optimal
schedule length of the problem when communication delays
are included. Second, we provide bounds in terms of the com-
munication time of a terminal chain of the schedule. A chain
in the DAG is a sequence of immediate predecessor-successor

pairs, whose first node is a node with no predecessor and
last node is a leaf node with zero successor.

For any given schedule, a terminal chain C of length N
can be constructed in the following fashion. We start with
one of the tasks that ends last in the given schedule, denoted
as cN . Among all the immediate predecessors of node cN ,
we pick one of the tasks that finishes last and define it
as cN−1. In such a way, we construct a chain of tasks
c1 ≺ c2 ≺ . . . ≺ cN until the first node c1 in the chain does
not have any predecessor. There may be many such terminal
chains, and our results apply to any arbitrary terminal chain
for the given schedule.

3. ALGORITHM DESIGN
In this section, we introduce the algorithmic framework,

Generalized Earliest Time First (GETF), which is inspired
by the classical ETF algorithm [4] and recent advances in
list scheduling for related machines [6].

At its core, GETF is a greedy algorithmic framework. Like
ETF, it seeks to always run a task that can be started earliest,
thus minimizing the idle time created by the precedence
constraints in a greedy way. However, this simple heuristic
does not take into account the potential difference between
the service rates of different machines. For this, GETF takes
inspiration from Speed-based List Scheduling (SLS) [1, 6] and
uses a group assignment function f(·) to determine sets of
“similar” machines and then assign tasks to different groups
of machines. Then, within the groups of similar machines,
GETF uses the ETF greedy allocation rule. More concretely,
GETF is parameterized by a group assignment function f(·),
and a tie-breaking rule. GETF proceeds in two stages. The
pseudocode for GETF is presented in Algorithm 1.

GETF is an algorithmic framework because it can be
instantiated with different group assignment and tie-breaking
rules. To understand these, consider a situation where the
m machines are divided into K groups M1,M2, . . . ,MK by
a group assignment rule. Let f(j) denote the group of
machines to which task j can be assigned, j = 1, . . . , n. In
other words, task j can be only assigned to machines in
group f(j). Given this notation, a schedule under GETF
consists of two mappings: a mapping h(·) from each task to
its assigned machine and a mapping t(·) from each task to
its starting time.

The choice of the group assignment rule has a significant
impact on the performance of GETF. Our technical results
are based on the following specific group assignment function.
Note that our results hold for any tie-breaking rule.

Group Assignment Rule. The group assignment rule
f(·) that we focus on is adapted from the work of [6], which
studies the setting without communication time. Specifically,
“similar” machines are grouped together as follows.

First, all the machines with speed less than a 1
m

fraction of
the speed of the fastest machine are discarded. Then, the re-
maining machines are divided intoK groupsM1,M2, . . . ,MK

where K = dlogγme and γ = logm/ log logm. Note that
K = O(logm/ log logm). Given the removal of the slowest
machines, we can assume that any remaining machine has
speed within a factor of 1

m
of the fastest machine. Without

loss of generality, we assume the speed of the fastest machine
is m and the group Mk contains machines with speeds in
range [γk−1, γk).

After dividing machines into K groups in the preprocessing
step, the task of assignment is more delicate than that of

2

Algorithm 1 Generalized Earliest Time First (GETF)

INPUT: group assignment rule f(·), tie-breaking rule
OUTPUT: schedule S with machine assignment mapping
h(·) and starting time mapping t(·)

1: R← {1, 2, . . . , n}
2: while R 6= ∅ do
3: A = {j : j ∈ R, @j′ s.t. j′ ∈ R and j′ ≺ j}
4: For j ∈ A, t′j = earliest starting time on machine m′j

s.t. m′j ∈ f(j)
5: B = {j : j = arg minj′∈A t(j

′)}
6: Choose j from B to start on machine m′j with a start-

ing time t′j based on the given tie-breaking rule
7: h(j) = m′j , t(j) = t′j
8: R← R \ {j}
9: end while

division. The design of f(·) is based on the solution of a linear
program (LP), which is a relaxed version of the following
mixed integer linear program (MILP).

min
xi,j ,Cj ,T

T∑
i

xi,j = 1 ∀j (1a)

wj
∑
i

xi,j
si
≤ Cj ∀j (1b)

Cj′ + wj
∑
i

xi,j
si
≤ Cj j′ ≺ j (1c)

1

si

∑
j

wjxi,j ≤ T ∀i (1d)

Cj ≤ T ∀j (1e)

xi,j ∈ {0, 1} ∀i, j (1f)

Note that the MILP is only designed to produce a group
assignment rule and thus its optimal solution does not provide
a feasible schedule. In the MILP, xi,j = 1 if task j is assigned
to machine i; otherwise xi,j = 0. For each task j, Cj denotes
the completion time of task j. Let T denote the objective.
As OPT(i) refers to the optimal schedule length obtained
ignoring communication delays, it is the optimal for this
MILP. Constraint (1a) ensures that every task is processed
on some machine. For any task j, processing time wj

∑
i

xi,j
si

is bounded by its completion time as in constraint (1b).
Constraint (1c) enforces the precedence constraints between
any predecessor-successor pair (j′, j). The total load assigned
to machine i is wj

∑
i

xi,j
si

and it should not be greater than

the makespan, as in constraint (1d). Finally, constraint (1e)
states that the makespan should not be smaller than the
completion time of any task.

Since we cannot solve the MILP efficiently, we relax it to
form an LP by replacing constraint (1f) with xi,j ≥ 0. Let
x∗i,j , C

∗
j , T

∗ denote the optimal solution of this LP. Note that

T ∗ provides a lower bound on OPT(i). For a set M ′ ⊆M of
machines, let s(M ′) denote the total speed of machines in M ′,
i.e., s(M ′) =

∑
i∈M′ si. Define x∗M′,j as the total fraction of

task j assigned to machines in set M ′: x∗M′,j =
∑
i∈M′ x

∗
i,j .

For any task j, define `j as the largest group index such that
at least more than half of tasks are assigned to machines
in groups M`, . . . ,MK : `j = max` ` s.t.

∑K
k=` x

∗
Mk,j

≥ 1
2
.

Each task j is assigned to the group f(j) that maximizes
the total speed of machines in that group among candidates

Mlj , . . . ,MK , i.e., f(j) = arg maxMk:`j≤k≤K s(Mk).

4. RESULTS
We now state our main technical result, which bounds

the approximation ratio of GETF in settings with related
machines and heterogeneous communication time. This is the
first algorithmic framework with a provable approximation
ratio in this setting.

Our result provides a bound in terms of the communication
time of a terminal chain of the schedule. In particular, let
C : c1 ≺ c2 ≺ . . . ≺ cN of length N be a terminal chain for
the schedule and define C as the communication time over
such a chain in the worst case, i.e., C =

∑N
j=2

wcj−1,cj

s̄(cj−1,cj)
,

where s̄(cj−1, cj) is defined as the slowest speed between the
assigned machine h(cj−1) of task cj−1 and any machine in
the same group f(cj) as the assigned machine h(cj) of task
cj , i.e., s̄(cj−1, cj) = mini∈f(cj) sh(cj−1),i.

Theorem 4.1. For any schedule S produced by GETF with
group assignment rule f(·) described above,

Cmax(S) ≤ O(logm/ log logm)OPT(i) + C,

where OPT(i) is the optimal schedule length obtained ignoring
the communication time.

The key technical advance that enables our new result is
a dramatically simplified analysis of ETF in the setting of
identical machines. Theorem 4.1 reduces to state-of-the-art
result for ETF in [4] in settings with identical machines.

Proposition 4.2. Consider a setting with m identical ma-
chines. For any schedule S produced by GETF,

Cmax(S) ≤ (2− 1

m
)OPT(i) + C′,

where OPT(i) is the optimal schedule length obtained ignoring

the communication time and C′ = 1
m

∑N
j=2

∑m
i=1

wcj−1,cj

sh(cj−1),i
.

5. REFERENCES
[1] F. A. Chudak and D. B. Shmoys. Approximation

algorithms for precedence-constrained scheduling
problems on parallel machines that run at different
speeds. Journal of Algorithms, 30(2):323–343, 1999.

[2] M. R. Garey and D. S. Johnson. Computers and
intractability: a guide to np-completeness, 1979.

[3] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM journal on Applied Mathematics,
17(2):416–429, 1969.

[4] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee.
Scheduling precedence graphs in systems with
interprocessor communication times. SIAM Journal on
Computing, 18(2):244–257, 1989.

[5] Y.-K. Kwok and I. Ahmad. Static scheduling algorithms
for allocating directed task graphs to multiprocessors.
ACM Computing Surveys (CSUR), 31(4):406–471, 1999.

[6] S. Li. Scheduling to minimize total weighted completion
time via time-indexed linear programming relaxations.
In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 283–294, Oct 2017.

[7] R. Mayer, C. Mayer, and L. Laich. The tensorflow
partitioning and scheduling problem: it’s the critical
path! In Proceedings of the 1st Workshop on Distributed
Infrastructures for Deep Learning, pages 1–6. ACM,
2017.

3

