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ABSTRACT
We study a general online resource allocation problem, where
a service provider sells multiple types of capacity-limited
resources to heterogeneous customers that arrive in a se-
quential manner. The provider charges payment from cus-
tomers who purchase the resource but must pay an increas-
ing marginal supply cost with respect to the total resource
allocated (e.g., production costs and/or operational costs).
The goal is to maximize the social welfare, namely, the to-
tal valuation of customers minus the total supply cost of
the provider. We adopt the standard competitive analy-
sis framework and provide an optimal online posted-pricing
mechanism. Our online mechanism is optimal in the sense
that no other online algorithms can achieve a better com-
petitive ratio.

1. INTRODUCTION
In this paper, we study a general online resource alloca-

tion problem in network economics and online optimization.
A service provider has multiple types of capacity-limited re-
sources (e.g., computing cycles, storage, or electricity) with
a set of prices at which they can be sold. Heterogeneous
customers arrive in an arbitrary manner. Upon the arrival
of a customer, she will be offered a price and adopt a take-it-
or-leave-it policy. The provider charges payment from those
customers who purchase the resource but must pay an in-
creasing marginal supply cost (e.g., production cost and/or
operational cost). The goal is to design a set of online posted
prices to maximize the social welfare, namely, the total val-
uation of customers minus the cost of the provider.

Online resource allocation problems have been studied ex-
tensively in different research communities. However, most
of the existing literature assume that the resource allocation
can be performed without increasing the cost of the provider.
This assumption is reasonable for the case of online alloca-
tion of digital goods [1], while for most other applications,
this is usually not the case as either the production cost or
the operational cost is an increasing function of the resources
that have been allocated (i.e., diseconomies of scale). For
example, in cloud computing, the operational costs of data
centers are usually an increasing function of its computing
resources that are currently occupied. Motivated by this,
Blum et al. [2] pioneered the study of online combinatorial
auctions with increasing production cost. In this setting,

Copyright is held by author/owner(s).

the seller can produce any number of copies of the items
being sold (i.e., without capacity limit), but needs to pay a
non-decreasing marginal production cost per copy. Blum et
al. proposed a pricing scheme called twice-the-index for sev-
eral reasonable marginal production cost functions such as
linear, lower-degree polynomial and logarithmic functions.
For each of them, a constant competitive ratio was derived.
In particular, for polynomial cost function f(ω) = ρωγ , the
competitive ratio is (1 + ε)4γ, where ε > 0 is an adjustable
parameter to achieve a certain tradeoff between competitive
ratio and additive loss. Huang et al. [3] later studied an
almost identical problem and achieved a tighter competitive
ratio with a unified pricing framework. In particular, for
polynomial cost function f(ω) = ρωγ without capacity limit,

Huang et al. [3] proposed a γγ/(γ−1)-competitive algorithm
when each customer is fractional, and they also proved that
no other online algorithms can be (γγ/(γ−1)−ε)-competitive
for any ε > 0.

(Our Contribution) We develop optimal posted-pricing
algorithms for capacity-limited online resource allocation
problems under increasing marginal costs. We focus on so-
cial welfare maximization and make the following contribu-
tions. First, we derive an analytical lower bound α(u) for
the competitive ratio of any pricing function indexed by u,
where u is the resource utilization level when the posted
price equals the maximum marginal cost. We prove that
there exists an optimal u∗ such that for any ε > 0, no other
online algorithms can be (α(u∗)−ε)-competitive. Our lower
bound α(·) generalizes the optimal competitive ratio derived
in [3] to the capacity-limited case. Second, we provide an op-
timal pricing framework to achieve the best-possible compet-
itive ratios of any online algorithms. Our proposed optimal
pricing functions improve the results of [2] and [3]. Inter-
estingly, the pricing scheme proposed in [3] is a special case
in our pricing framework when the capacity limit is relaxed,
and directly applying the design in [3] is suboptimal in the
capacity-limited case. Third, our optimal pricing function is
designed based on the assumption of knowing the maximum
valuation-to-demand ratio (say p), as in most existing work.
However, we obtain a counter-intuitive result, namely, when
p is lower than a certain threshold (which can be quantified),
the optimal competitive ratio can be achieved regardless of
having the exact knowledge of p. Therefore, we can relax the
assumption of knowing the exact value of p under this sce-
nario, leading to an optimal online algorithm that requires
as fewer assumptions as possible.

2. PROBLEM STATEMENT



We consider the problem of a single service provider, who
is selling a set K = {1, · · · ,K} of K types of resources
to its customers I = {1, · · · , I}. Customers arrive one at
a time in some arbitrary manner and want to purchase
a bundle of resources b ∈ Bi based on their own private
preferences, where Bi denotes all the possible bundles for
customer i. We denote the demand of customer i for re-
source type k in bundle b by rbi,k. We consider limited-
supply, and normalize the capacity limit to be 1, and thus
the demand rbi,k denotes the proportion of the capacity limit.
Each customer i decides whether to buy a bundle of re-
sources or not based on the posted price pk for each resource
type k, and picks the utility-maximizing bundle by solving
arg maxb∈Bi v

b
i −
∑
k∈K pkr

b
i,k, where vbi is the valuation for

the resources in bundle b, and
∑
k∈K pkr

b
i,k is the payment

made by customer i if bundle b is chosen. Considering the
individual rationality, customers will purchase the resource
if and only if the payment is less than or equal to the valu-
ation (i.e., non-negative utility).

Let us denote the choice of customer i by binary variable
xbi ∈ {0, 1}, where xbi = 1 denotes customer i chooses to
buy the b-th bundle, and xbi = 0 otherwise. We use xbi (alg)
to denote the dependency of xbi on a particular pricing al-
gorithm alg. Obviously we have

∑
b∈Bi x

b
i (alg) ≤ 1. The

provider collects payments from all the customers who pur-
chase the resources and pays a total cost of

∑
k∈K f (wk),

where wk =
∑
i∈I
∑
b∈Bi r

b
i,kx

b
i (alg) denotes the total re-

source allocated by algorithm alg, and f(·) denotes total
supply cost of the service provider1. We focus on the power
cost case and assume f(·) takes the following form

f(ω) =

{
ρωγ if 0 ≤ ω ≤ 1,

+∞ if ω > 1,
(1)

where 1 denotes the normalized capacity limit and γ ≥ 2.
Let Walg denote the social welfare achieved by online al-

gorithm alg, which is given by summing over the utilities
of all the customers and the sevice provider, i.e., Walg =∑
i∈I v

b
ix
b
i (alg) −

∑
k∈K f (wk), where the payment terms

cancel out and thus the social welfare equals the total val-
uation of customers minus the total cost of the provider. If
we assume a complete knowledge of customer arrival infor-
mation, then the social welfare maximization in the offline
setting can be written as follows:

Wopt = max
{xbi}∀i,b

∑
i∈I

∑
b∈Bi

vbix
b
i −

∑
k∈K

f(wk)

s.t.
∑
i∈I

∑
b∈Bi

rbi,kx
b
i = wk,∀k;

∑
b∈Bi

xbi ≤ 1, xbi ∈ {0, 1}, ∀i,

where Wopt denotes the optimal social welfare. Our tar-
get is to design an online posted-pricing algorithm (i.e., the
design of pk) such that Walg is as close to Wopt as possi-
ble. The performance of our pricing algorithm is quantified
by the standard competitive analysis framework, namely, if
Walg ≥ 1

α
Wopt for all possible instances, then we say alg is

α-competitive, where α ≥ 1 and the closer to 1 the better.
We make the following mild assumptions throughout the

paper. First, each customer’s demand is much smaller com-
pared to the total resource capacity. That is, after normal-
ization, the demand of each customer rbi,k is much smaller

1The cost function f(·) is allowed to be different among
different resource types (i.e., fk(·)). Here we consider a sim-
plified setting due to space limitation.
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Figure 1: The pricing function p(ω) and the marginal
supply cost f ′(ω). The design variable u ∈ (0, 1) is a

threshold such that p(u) = c, where c , f ′(1) is the
maximum marginal cost when the resource utiliza-
tion reaches the capacity limit 1.

than 1. This is a common assumption in online auctions
and pricing algorithm design, e.g., [3], since it allows us to
focus on the online nature of our problem with mathemati-
cal convenience. Meanwhile, in many real-world large-scale
systems, this assumption naturally holds. Second, we as-
sume that the customers’ valuation-to-demand ratio is up-
per bounded by p, i.e.,

max
∀i,b,k,rb

i,k
6=0

{
vbi
rbi,k

}
≤ p. (3)

Note that p can be interpreted as the maximum price that
customers are willing to accept for purchasing a single unit
of resource. We make this assumption to eliminate those
rare cases with extremely high valuations.

3. MAJOR RESULTS
We propose an online posted-pricing mechanism PPM in

Algorithm 1. PPM takes (f, p) and pricing function p(·) as
inputs. At each round when there is a new arrival of cus-
tomer i ∈ I, PPM offers her the current price pk = p(wk)
for resource type k based on the current total resource uti-
lization wk. If customer i decides to purchase a bundle of
resources, say b∗ ∈ Bi, then PPM will charge this customer
with the payment calculated in line 4 and update the total
resource utilization level wk in line 5.

Algorithm 1: Posted-Price Mechanism (PPM)

1: Input: (f, p) and p(·), and initialize wk = 0 for all k
2: while a new customer i arrives do
3: Offer resource type k at price pk = p(wk).

4: Customer chooses bundle b∗ and pays
∑
k∈K pkr

b∗
i,k.

5: Service provider updates the resource utilization by
wk = wk + rb∗i,k,∀k ∈ K.

6: end while

To facilitate an online implementation, pk = p(wk) is cal-
culated based on the current resource consumption wk only
(i.e., casual information only). Fig. 1 illustrates the rela-
tionship between p(·) and the marginal cost function f ′(·).
As can be seen, p(·) is always lower bounded by f ′(·) and is
strictly increasing w.r.t. the total resource allocated. There
is a special threshold u ∈ (0, 1), such that p(u) = f ′(1) , c,
i.e., u is the resource utilization level when the posted price
equals the maximum marginal price. Intuitively, a smaller
u indicates a more aggressive pricing strategy, and a basic



challenge is how to design p(·) in a strategic way such that
a good balance between aggressiveness and conservativeness
can be achieved. Below we present the major results of this
paper.

Theorem 1 (Lower Bound). Given the cost function f and
p > c, suppose the pricing function satisfies p(u) = c, where
u ∈ (0, 1), then the best-possible competitive ratio that PPM

can achieve is α(u), which is given by

α(u) = αγ(u) · I{u∈(0,uγ)} + αinf
γ · I{u∈[uγ ,1]}, (4)

where αγ(u), αinf
γ , and uγ are given by

αγ(u) ,
γ − 1

u− uγ , α
inf
γ , γγ/(γ−1), uγ ,

(
1

γ

) 1
γ−1

, (5)

and indicator function I{A} equals 1 if A is true, and 0 oth-
erwise.

Theorem 1 provides a lower bound of α for any pricing
function indexed by u. Note that α(u) is non-increasing in
u ∈ (0, 1) and achieves its infimum αinf

γ when u ∈ [uγ , 1),

where αinf
γ depends on γ only. Based on Theorem 1, finding

the optimal pricing function is equivalent to finding the op-
timal threshold u∗ so that the minimum competitive ratio
α(u∗) can be achieved. Below we give a proposition to show
the existence of such optimal threshold u∗.

Proposition 2. Given the cost function f and p > c, there
exists a unique threshold u∗ ∈ (0, 1) that satisfies

1−Qγ−1 (u∗, α(u∗))

exp (u∗ · α(u∗))
=
p/c−Qγ−1 (1, α(u∗))

exp (α(u∗))
, (6)

where Qγ−1 (ω, α) is a polynomial in degree γ − 1, given by

Qγ−1 (ω, α) =

γ∑
n=1

znω
γ−n, (7)

and zn is given by

z1 = 1, zn =
zn−1(γ − n+ 1)

α
, n = {2, · · · , γ}. (8)

Note that both sides of Eq. (6) are functions of the single
variable u∗, and thus the unique u∗ can be found by various
numerical methods such as bisection search. We emphasize
that both Qγ−1(ω, α) and Eq. (6) are derived by solving
a group of first-order ordinary differential equations with
boundary conditions. Meanwhile, based on whether u∗ is
within (0, uγ ] or (uγ , 1), the optimal pricing functions to be
designed in Theorem 3 have different forms.

Note that the calculation of u∗ depends on the value of
p. For each given p ≥ c, let us define the unique u∗ that
satisfies Eq. (6) as a function of p as follows:

u∗ , Λ(p),∀p ∈ (c,+∞). (9)

Based on Proposition 2, below we give our optimal pricing
function design in Theorem 3.

Theorem 3 (Optimal Design). Let us define pγ as follows

pγ , cQγ−1

(
1, αinf

γ

)
+ c
(
1−Qγ−1

(
uγ , α

inf
γ

))
eα

inf
γ (1−uγ).

The optimal pricing function is determined as follows:

• If p ∈ (0, c], PPM achieves an optimal competitive ratio of
αinf
γ if p(ω) = ργ2ωγ−1. Meanwhile, there exist infinitely-

many pricing functions such that PPM is αinf
γ -competitive.

• If p ∈ (c, pγ), for each q ∈ [p, pγ), there exists a pricing
function p(·) with threshold u∗ = Λ(q) ∈ (uγ , 1) so that
PPM achieves an optimal competitive ratio of αinf

γ , where
p(·) is given by

p(ω) =


cϕγ−1, if ω ∈ [0, u∗],

q−cQγ−1

(
1,αinf

γ

)
exp
(
αinf
γ (1−ω)

) + cQγ−1

(
ω, αinf

γ

)
, if ω ∈ (u∗, 1],

where ϕ is the unique root to the following equation in
variable ϕ ∈ (0, 1) for any given ω ∈ (0, u∗]:∫ ϕ

ω

1
u∗

ηγ−1

ηγ − αinf
γ

γ−1
ηγ−1 +

αinf
γ

γ−1

dη = ln
(u∗
ω

)
. (10)

In this scenario, p(1) = q and u∗ = Λ(q) ∈ (uγ , 1) is
calculated based on Eq. (6) by replacing p with q.

• If p ≥ pγ , there exists a unique pricing function p with
threshold u∗ = Λ(p) ∈ (0, uγ ] so that PPM achieves the
optimal competitive ratio of αγ(u∗), where p(·) is given by

p(ω) =

{
cωγ−1/uγ−1

∗ , if ω ∈ [0, u∗],
p−cQγ−1(1,α(u∗))
exp(α(u∗)(1−ω)) + cQγ−1 (ω, α(u∗)) , if ω ∈ (u∗, 1].

In this scenario, p(1) = p. In particular, when p = pγ , we
have u∗ = uγ .

Theorem 3 summarizes our optimal pricing function de-
sign in three different scenarios, where in the first two sce-
narios the optimal pricing functions are not unique, while
in the last scenario there exists a unique pricing function so
that PPM achieves the optimal competitive ratio of αγ(u∗).
An interesting results revealed by Theorem 3 is that, when
p is below pγ , it is not necessary to know the exact value
of p to achieve the best-possible competitive ratio of αinf

γ .
Note that p represents the uncertainty or variance of users’
valuation, and thus Theorem 3 indicates that, when the un-
certainty level is below a certain threshold (i.e, p ≤ pγ),
the best-possible competitive ratio can be achieved by PPM

regardless of having the exact knowledge of p.

4. CONCLUSION
We studied a general online resource allocation problem

in the presence of increasing marginal supply cost and ca-
pacity limit. We proposed an optimal online posted-pricing
mechanism that achieves the best-possible competitive ratio
under different scenarios. Our proposed online mechanism
generalizes the design in [3] to the capacity-limited case, and
improves the results in both [2] and [3].
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