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1. INTRODUCTION
How should an attacker, who wishes to hurt (deny) ser-

vice, attack resources on a geographically distributed system
in order to maximize the damage inflicted? Should attack
efforts focus on a small number of regions (sites) or rather
spread over many regions to yield wide spread effect? Con-
sequently, how resources should be optimized as to minimize
the gain of a damage-maximizing attacker? These are the
questions that motivate this research and are at its core.

The questions apply to a large variety of highly sensitive
applications, both in the cyber domain and in the physi-
cal domain, such as management of resources on distributed
clouds, allocation of base-station resources in cellular net-
works and control of electricity production plants on the
electrical grid. For the sake of simplicity our presentation
will focus on distributed cloud servers.

The answer to these questions is important for design-
ing distributed resources systems properly. Placing the re-
sources at such systems, in preparing for attacks, must be
done in order to minimize the attack damage and under
the assumption that the attacker aims at maximizing the
damage. It is common knowledge that cyber attacks have
become of major concern over the years, especially when the
world has been shifting towards cloud solutions.

It is important to note that the question we address is how
to maximize the damage inflicted on the users served by the
resources, and not how to maximize the damage inflicted
on the servers/resources, or at failing the system1. The fact
that the user demand to these resources is stochastic is what
makes the question challenging.

A number of studies dealt with resource allocation prob-
lems in the cloud (e.g., [1], [2] and [3]). [3] dealt with deriv-
ing optimal resource allocation to cope with faulty resources,
resulting from either malfunction or from attacks. However,
[3] inherently assumes that failures are random and are not
tailored to maximize damage. [3] also provides the moti-
vation for our work which aims at understanding how to
optimize resource allocation in order to cope with damage
maximizing attackers, and whether such optimal allocations

1When one wishes to ”fail a system” it is quite intuitive that
the optimal strategy is to concentrate all efforts on the weak-
est defence point, such as militaries used to do when they
aimed at ”breaking a wall” to conquer a city. However, since
we aim at maximizing the damage to the stochastic demand
served by the system, optimal strategy is not obvious
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inherently differ from those derived in [3].
The results reported in this work form a preliminary set of

results that characterize the methodology of an optimal at-
tack on distributed resource systems. We use a model where
the user demand for resources/services is of arbitrary multi-
dimensional distribution. We start the analysis by address-
ing deterministic attacks, namely where each attack agent
inflicts deterministic damage (e.g. takes down a server). We
then move to stochastic attacks, which are more realistic,
where this damage is probabilistic (succeeds with probabil-
ity p). We further consider a more sophisticated defence
whereby the system may mitigate the attack damage by us-
ing a real-time shift of demands from one region to another.
Our results show that for all these configurations, it is op-
timal for the attacker to focus efforts on a small number of
regions.

Further work is described in Section 5.

2. THE MODEL
The system consists of n regions numbered 1, 2, . . . , n. Let

Li be the number of resources placed (servers) in region i,
for i ∈ {1, . . . , n}. The placed resources vector in the system
is called an allocation, and is denoted by L = (L1, . . . , Ln).

Let Di be a discrete random variable denoting the de-
mand (number of resources requests) in region i. We do not
make any assumption on the distribution of Di, that is, it
can be of an arbitrary distribution, besides the trivial re-
quirement that the support should be entirely non-negative.
Further, we do not assume independence between the de-
mands, namely Di and Dj are not necessarily mutually in-
dependent. Finally, let the system’s demand be denoted by
D = (D1, . . . , Dn).

An attacker who wishes to hurt the the system will invest
attacking agents in order to do so. Let xi by the number of
attacking agents invested in region i (such as viruses for ex-
ample). The attack vector (or simply attack) on the network
is X = (x1, . . . , xn). ‖X‖ =

∑
xi is the attack size.

As Li is the number of allocated resources in the region
i, we denote by S(Li, xi) the supply of the resources in that
region. S(Li, xi) is a random variable and is the number of
surviving resources after a possible failure due to an attack of
size xi on a placement of Li resources. We note that the sup-
ply volume cannot be larger than the placement and cannot
be negative. Hence, the support of the supply distribution
S(Li, xi) is {0, 1, . . . , Li}, for any xi. For brevity, from now
on Li and S(Li, xi) will be referred to as the placement and
supply under the attack X in region i, respectively.



2.1 Objective Function
Consider a request made in region i under the supply

S(Li, xi). If the request is assigned to a resource in the
region, then the request is called satisfied. We assume that
the system is rewarded from assigning a request to a re-
source (and satisfying it). The reward for each such request
in region i is denoted ri.

Let di and s(Li, xi) be realizations of the demand Di

and the supply S(Li, xi) in region i. The total reward
derived in region i under this realization is equal to ri ·
min{s(Li, xi), di}.

Finally, the objective function of the attacker is to mini-
mize the expected revenue of the system, R(X), parameter-
ized by the attack X where its volume is limited by ‖X‖ ≤ x:

min
X:‖X‖≤x

R(X) = min
X:‖X‖≤x

n∑
i=1

ri ·E[min{S(Li, xi), Di}]. (1)

3. OPTIMAL STRATEGY
In this section we prove that concentrating the attack is

an optimal strategy for the attacker. We start by looking at
deterministic attacks. Afterwards, we move to a stochastic
attack model with a binomial supply (of concurrent attack
agents).

3.1 Deterministic Attacks
In a deterministic attack each attacking agent disables a

deterministic (and fixed) number of system resources. For
simplicity of presentation we may assume that this num-
ber is 1. Namely, given that Li resources were placed in
region i, the number of surviving resources is S(Li, xi) =
Li − xi. Using the fact that for any non-negative random
variable Z and any positive integer z the following holds:
E[min{Z, z}] =

∑z
i=1 Pr[Z ≥ i], we get that the expected

revenue of the whole system, as a result of the attack X, is:

R(X) =

n∑
i=1

E[min{S(Li, xi), Di}] =

n∑
i=1

Li−xi∑
j=1

Pr[Di ≥ j].

(2)
Let ∆i(xi) be the marginal damage due to adding the xith

attacking agent in region i (comparing to only launching
xi − 1 agents). Namely, ∆i(xi) = −(R(X) − R(Xi−1)),
where Xi−1 = (x1, . . . , xi−1, . . . , xn). For the deterministic
attack, we have:

∆i(xi) = ri · Pr[Di ≥ Li − xi + 1]. (3)

Note that: R(X) = R(0̄)−
∑n

i=1

∑xi
j=1 ∆i(j), where 0̄ is the

”empty attack” (i.e., no attacking agents in use).

Definition 1. An attack realization X = (x1, . . . , xn) is a
concentrated attack if for one region at most (or none), say
j, it holds that 0 < xj < Lj . For all other regions it holds
that xi = 0 or xi = Li.

We move to prove the main result of this section, stating
that concentrating the attack is the optimal strategy for
a deterministic attack. In our proof we use the fact that
for any i, j: ∆i(j) ≤ ∆i(j + 1), resulting from (3) and the
monotonicity of cumulative distribution functions.

Theorem 1. There exists a concentrated-attack vector X̂,
‖X̂‖ ≤ x, for which:

R(X̂) = min
X:‖X‖≤x

R(X) (4)

Proof. Let X’ = (x1, x2, . . . , xn) be an attack vector
such that R(X’) = minX:‖X‖≤x R(X). Assume that there
exist two regions, i1, i2 such that:

0 < xi1 < Li1 , 0 < xi2 < Li2

(otherwise, the proof is complete). If ∆i1(xi1) 6= ∆i2(xi2),
then w.l.o.g ∆i1(xi1) < ∆i2(xi2). By moving an attacking
agent from region i1 to region i2, we get an attack with
higher damage since by the monotonicity of the marginal
damage, ∆i1(xi1) < ∆i2(xi2) ≤ ∆i2(xi2 + 1) – a contradic-
tion to optimality of X′. If, on the other hand, ∆i1(xil) =
∆i2(xi2) we pick w.l.o.g region i1 and move attacking agents
from it to i2, until we either reach ∆i1(xil) < ∆i2(xi2), or
we reach xi1 = 0 or xi2 = Li2 . In the first case, as before, we
have a higher damage to the system – a contradiction to op-
timality of X′. In the latter cases, we derive a concentrated
attack which maximizes the damage.

Corollary 1. For any deterministic attack, and for any al-
location and stochastic demand, concentrating the attack is
an optimal attack strategy.

3.2 Concurrent Stochastic Attackers
While in the deterministic world each attacked resource

fails, we now assume that the success of an attacking agent
is stochastic: each attacked resource fails (independently)
with probability p. Hence, the number of failures is a ran-
dom variable with Binomial distribution and the number
of surviving resources is Sp(Li, xi) ∼ Li − Bin(xi, p). This
model is more general than the prior model and models re-
alistic situations where the success of an attacking agent is
a random variable, independent of the success of the other
agents.

Now, the supply turns stochastic as well and the expres-
sion E[min{Sp(L, x), D}] becomes more challenging as it
forms a convolution. Yet, we prove that the marginal dam-
age of the attacker remains monotonic under this settings.

Theorem 2. For any Di, Li, i and 1 ≤ x ≤ Li,

∆i(x) ≤ ∆i(x + 1).

We start by proving two lemmas and then conclude with
proving the theorem.

Lemma 1. The marginal damage of attack agent x, 1 ≤
x ≤ Li, in region i is:

∆i(x) = ri · p · Pr[S(Li, x− 1) ≤ Di]. (5)

Proof. Let Gi(x) = min{Sp(Li, x), Di}. By Eq. (1), we
know that:

∆i(x) = ri · (E[Gi(x− 1)]− E[Gi(x)]).

Since the success of each agent is independent of the oth-
ers, adding an attack agent to a region is beneficial if and
only if: (1) The agent succeeds in failing a resource, (2)
The corresponding resource is assigned to demand and fail-
ing it results in rejecting a request. Let Ix be an indicator
which gets the value of 1 if the xth attack agent successfully
attacked a resource. Then,

Gi(x− 1)−Gi(x) =

{
ri if Sp(Li, x− 1) ≤ Di and Ix = 1

0 otherwise
.

Hence, ∆i(x) = ri ·p ·Pr[S(Li, x−1) ≤ Di], as required.



Lemma 2. For any d, L, x > 0,

Pr[Sp(L, x) ≤ d] ≤ Pr[Sp(L, x + 1) ≤ d].

Proof. The proof follows from the inequality: Pr[Bin(x+
1, p) ≥ d] = Pr[Bin(x, p) ≥ d] + p · (Pr[Bin(x, p) ≥ d − 1] −
Pr[Bin(x, p) ≥ d]) ≥ Pr[Bin(x, p) ≥ d]. For lack of space the
full detailed proof is omitted.

Proof (Theorem 2). We use Eq. (5) from Lem. 1 in
order to prove the monotonicity of the marginal damage.
Therefore, we need to prove that: Pr[S(Li, x − 1) ≤ Di] ≤
Pr[S(Li, x) ≤ Di]. Using the law of total probability and
Lem. 2 the inequality holds.

Note that Thm. 1 in the previous section, stating that
concentrating the attack is an optimal strategy under the
deterministic model, was based on the monotonicity of the
marginal damage function. Therefore, based on Thm. 2,
Thm. 1 holds under this settings as well.

Corollary 2. For any binomial attack, and for any alloca-
tion and stochastic demand, concentrating the attack is an
optimal attack strategy.

4. USER-MIGRATION DEFENSE
Some geographically distributed systems (such as cloud

based server systems) can reduce the damage of attacks us-
ing dynamic user (request) migration. Under such mecha-
nism the system may shift requests from one region to an-
other based on dynamic fluctuations of the demand or of the
resources availability. Thus, if one region experiences many
failures due to an attack, the system can shift the requests
of that region to another region, possibly incurring an addi-
tional cost. In this section we extend the analysis and study
optimal attacks under request-migration architectures.

Consider a request made in the system. The request can
be assigned to a resource located in the region where it is
formed (satisfied locally). Otherwise, it can be assigned to a
resource located in a remote region (satisfied remotely). A
request is unsatisfied when it is not assigned to any resource
in the system. There is a higher reward for satisfying a re-
quest locally (rather than remotely). Let r be the reward for
satisfying a request, and ri the bonus when satisfied locally.

The assignment problem (assigning a request to resources
in the network, given a realization of the supply and de-
mand) has a closed-form solution, as was proved in [2].
The idea is to start by assigning resources locally and then
matching requests with remaining available remote resources.
Hence, the system’s revenue under an attack X, R(X), when
using user-migration defence is:

n∑
i=1

ri ·E[min{S(Li, xi), Di}]+r ·E[min{
n∑

i=1

S(Li, xi), ‖D‖}].

(6)
In the following subsection, we study the effect of request-
migration on the optimal attack strategy derived in Sec. 3.

4.1 Attacks under user migration

Deterministic Attacks. Let L and D be the system’s al-
location and demand, respectively. Let X1, X2 be attack
vectors such that ‖X1‖ = ‖X2‖. The supply S of resources
under a deterministic attack is: S(L, x) = L− x. Using Eq.
(6), the system revenue under attack X1 is:

n∑
i=1

ri ·E[min{Li−xi, Di}]+r ·E[min{
n∑

i=1

(Li−xi), ‖D‖}] =

=

n∑
i=1

ri ·E[min{Li−xi, Di}]+r ·E[min{‖L‖−‖X1‖, ‖D‖}].

In Subsection 3.1 we proved that the first term of this
equation optimizes when we concentrate the attacks. The
second term of this equation is a function of ‖L‖, ‖D‖ and
‖X1‖. According to our assumption, ‖X1‖ = ‖X2‖. There-
fore the second term has the same value under both attacks,
since given L and D it depends only on the attack-size.

Corollary 3. For any deterministic attack, and for any al-
location and stochastic demand, concentrating remains an
optimal attack strategy under the user-migration defense.

Concurrent Stochastic Attackers. The supply Sp under
a binomial attack is Sp(L, x) = L − Bin(x, p). The follow-
ing is a known property of binomial distributions: For X =
(x1, . . . , xn) where ∀i, xi ≥ 0,

∑n
i=1 Bin(xi, p) = Bin(‖X‖, p).

Hence,

min{
n∑

i=1

Sp(Li, xi), ‖D‖} = min{‖L‖ − Bin(‖X‖, p), ‖D‖}.

(7)
As in the deterministic model, the second term of this equa-
tion depends only on the attack-size, ‖X‖, and p, given L,D.
In Subsection 3.2 we proved that the first term optimizes
(given the attack size and success probability) when we con-
centrate the attack.

Corollary 4. For any binomial attack, and for any alloca-
tion and stochastic demand, concentrating remains an opti-
mal attack strategy under the user-migration defense.

5. CONCLUSIONS AND FURTHER WORK
We analyzed optimal attacks on distributed resource sys-

tems with stochastic demand and showed that optimal at-
tacks must be concentrated. This applies both to deter-
ministic and binomial attacks. Furthermore, it holds also
when systems use user-migration dynamic defense. The con-
centration property assists us in devising algorithms (which
were not presented for lack of space) to derive the optimal
attack on a given system. Further results of our work and
an ongoing work develop the methodology to a wider set
of attacks and study how to optimize resource placement
against worst-case attacks.
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