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1. INTRODUCTION
Epidemic processes are widely used as an abstraction for

various real-world phenomena – human infections, computer
viruses, rumors, information broadcasts, etc. [5, 1, 3]. Un-
der the SIR model (susceptible-infected-removed/recovered)
in finite networks, the effective reproduction number, R(),
decreases as nodes become infected and removed. Hence,
the spread process remains active for a while but eventu-
ally dies out (following R < 1, “herd-immunity”). Such
threshold phenomena have been observed empirically. In
these special days of COVID-19, estimations of the spread-
induced Herd Immunity Threshold (HIT) are a key factor
in directing strategic decisions concerning the fight against
the pandemic.

Recent works showed that heterogeneity of spreading across
nodes in the network decreases the traditionally predicted
value of HIT dramatically [2, 4]. In this work we extend
recent mathematical models and propose that the spreading
intensity of a node and its heterogeneity are composed of two
components. The first component reflects personal proper-
ties for each node and the second reflects occasional spreads
across the network. Consequently, studying the spreading
dynamics requires the analysis of a stochastic process con-
sisting of two stochastic functions which drastically differ on
their dynamics. One (continual) is biasly-modified through-
out the process as infected nodes get immune and leave the
game. The other (occasional) remains constant since it is
identically distributed for the entire network.

By distinguishing between the different behavior of these
components, we show that their relative weight affects dra-
matically the dynamics of the spread across the network.
It reveals that different societies may engender significantly
different HITs. Our approach can be used for addressing op-
erational aspects and examine the effectiveness of preventive-
measures used to mitigate the spread (by suppressing the
stochastic functions, e.g., lockdowns and vaccines). We find
that while some lockdowns decrease the HIT, others increase
the HIT and may be counter-productive in the long-run.

The paper is organized as follows. In Section 2 we present
our stochastic spreading model. We then (Section 3) move to
analyze the disease dynamics and derive the Herd Immunity
Threshold of a given network. In Section 4, we discuss the
ongoing COVID-19 pandemic. Further work and concluding
remarks are given in Section 5.

It should be noted that the model can apply to a variety
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of viruses (malware) spreading in networks. For the sake
of clarity and actuality our presentation will focus on pan-
demics. We will refer to a network as population/society
and nodes as individuals.

2. THE MODEL
Our analysis begins with a certain number of infected indi-

viduals (where all others are assumed to be initially suscep-
tible (S)). As a result of an infection, susceptible individuals
become infectious (I). After an infectious period, individuals
are removed (recover or die) (R) and ”leave the game”.

We measure the spread of the disease as a function of the
number of individuals who contracted it. Namely, the event
whereby the nth individual gets infected is called the nth
step of the disease. This indexing method will be useful in
deriving the Herd Immunity Threshold.

Spreading Functions
We extend the model of [4] and classify spreading into two
inherently different types: (1) Personal-Trait-Spreading and
(2) Event-Based-Spreading. The first (Personal-Trait) stems
from the personal traits of an individual, while the second
(Event-Based) relates to social events in which every indi-
vidual may participate, regardless of their personal traits1.

The susceptibility of v at step i, which is the likelihood of
v to be infected, is:

Si(v) = p · Sp(v) + (1− p) · Si
e(v), (1)

and the infectiousness of v at step i, which is the likelihood
of v to infect others is

Ii(v) = p · Ip(v) + (1− p) · Iie(v). (2)

Where:

• Sp and Ip are the personal-trait susceptibility and in-
fectiousness parameters of u, respectively. The val-
ues of Sp(v) and Ip(v) reflect personal traits of v, are
drawn once for v (spread beginning) and accompany v
throughout the entire progress of the disease, as in [4].

1As examples of these two types, consider a supermarket
cashier compared to an academic researcher. In any given
day, the cashier interacts with tens or hundreds of people,
and therefore has high personal-trait spreading degree. In
contrast, the researcher stays in the laboratory or interacts
with a small research group. However, both may participate
in a social-gathering event such as a concert, a wedding, or
”just” a family birthday party. During such an event, both
may engage in a similar amount of social interaction (which
may be quite large), and therefore they both have the same
event-based spreading degree.



• In addition, and beyond the model of [4], we assign
event-based susceptibility and infectiousness parame-
ters, Se and Ie. These values reflect occasional event-
based spreading and are subject to change throughout
the progress of the disease since they probabilistically
redrawn for each individual at every step of the pan-
demic. At step i we assign to v Si

e(v) and Iie(v), the
realizations for step i. These values are drawn from
probability distributions that are common for the en-
tire population, denoted ΛS and ΛI .

• p (and q := (1 − p)) represents the relative weight of
each spreading type in the society (0 ≤ p ≤ 1). Soci-
eties characterized by a low (high) level of social gath-
erings will have a high (low) value of p.2

The symmetry in structure between S(v) and I(v) stems
from the assumption that infectiousness and susceptibility
levels are both proportional to the interpersonal interactions
and the biological characteristics of v.

We follow [4] and define ϕ(σ), the expected conditional
infectiousness. In our case, it is logical to parameterize ϕ(σ)
only by the personal-trait susceptibility and infectiousness:

ϕ(σ) := E [Ip(v)|Sp(v) = σ] . (3)

As was discussed, the heterogeneity of the spreading val-
ues of the population will play a major role in our analysis
Hence, we will measure3:

ρ(σ, n) := Pr
[
Sp(v) = σ

∣∣∣v ∈ Hn

]
(4)

where Hn is the healthy population at step n.

Basic and Effective Reproduction Rate
The basic reproduction number, R0, is a measure of how
transferable a disease is. It is defined as the expected num-
ber of secondary cases produced by a single (typical) infec-
tion in a completely susceptible population (of size N0).

As the spread continues, varying proportions of the popu-
lation are recovered/removed at any given time. Hence, we
will measure the effective reproduction number, R(n), which
is defined as the expected number of infections directly gen-
erated by the nth infected individual (e.g., R0 = R(0)).

Note that, intuitively, R(n) is continuously decreasing as
the susceptible population decreases when individuals be-
come infected and then removed.

For any individual v, the probability that v will be infected
at step n, assuming that v was susceptible at step n− 1 is:

Sn−1(v)∑
u∈Hn−1

Sn−1(u)
. (5)

Therefore,

R(n) = E[In(v) ·
∑
u6=v

Sn(u)] =

=
∑

v∈Hn−1

Sn−1(v)∑
u∈Hn−1

Sn−1(u)
In(v)

∑
u6=v∈Hn−1

Sn(u)

2Note that the special case where p = 1 gives exactly the
model of [4] (only one spreading type).
3For continuous σ , Eq. (4) should be considered as a density
function.

where the expectation is taken over all possible scenarios of
infections. This can be approximated by:

R(n) ≈
∑

v∈Hn−1

Sn−1(v) · In(v). (6)

Using Eq. (1), (2) and (6) we have:

R(n) ≈ N(n)

∫
ρ(σ, n) · (p · σ + q · λS) (p · ϕ(σ) + q · λI) dσ

(7)
where N(n) is the size of the susceptible population at step
n and λS , λI are the means of ΛS ,ΛI , respectively.

3. HERD IMMUNITY THRESHOLD
We analyze the changes in the composition of the popula-

tion throughout the spread of the disease, and the decrease
of R(n) as the fraction of the population that contracted the
disease increases. This is established in Theorem 1 and can
be used to derive the Herd Immunity Threshold

Theorem 1. For any δ > 0 when

1−
∫
ρ(σ) · exp (−δ · (p · σ + q · λS)) dσ (8)

fraction of the population is infected, the effective reproduc-
tion number, R(n), will be lower than the basic reproduction
number, R0, by a factor of∫

ρ(σ, 0) · exp (−δ · (p · σ + q · λS)) · r(σ)dσ∫
ρ(σ, 0) · r(σ)dσ

(9)

where

r(σ) = (p · σ + q · λS) · (p · ϕ(σ) + q · λI) .

The threshold for herd immunity (HIT) is when the value
of the effective reproduction number is R(n) ≤ 1 (and hence
the number of infection cases decreases).

Outline of Proof 1. We begin by deriving the probability
that an individual v is susceptible at step n. We take log
over Eq. (5), and counting over the steps 1, . . . , n. Full
calculations appear in [6] (archive). We then have:

log(Pr[v is susceptible at step n]) ≈ −
n−1∑
i=1

Si(v)

N(i) · Eu∼Hi [S
i(u)]

.

(10)
Since our calculation is done by taking an expectation over
all possible scenarios of infections, by Eq. (1) and Eq. (2):

Pr[v is susceptible at step n] ≈ exp (−β(n) · (p · Sp(v) + q · λS))
(11)

where

β(n) =

n−1∑
i=0

1

N(i) · Eu∼Hi [S
i(u)]

. (12)

According to Eq. (11), for any s ∈ Supp(Sp),

ρ(s, n) ≈ ρ(s, 0) · exp (−β(n) · (p · s+ q · λS))∫
ρ(σ, 0) · exp (−β(n) · (p · σ + q · λS)) dσ

, (13)

and

N(n) ≈ N0·
∫
ρ(σ, 0)·exp (−β(n) · (p · σ + q · λS)) dσ. (14)



Figure 1: The over-time reduction in R(n), and its
contributing factors as a function of n assuming p =
0.5, k = 0.1, and R0 = 3.

Following Eq. (7), Eq. (13) and Eq. (14),

R(n)

R0
=

∫
ρ(σ, 0) · exp (−β(n) · p · σ + q · λS) · r(σ)dσ∫

ρ(σ, 0) · r(σ)dσ
.

This concludes the proof as the value of Eq. (8) is 1− N(n)
N0

.

4. COVID-19: DISCUSSION
To demonstrate our results we use a Gamma distribution

with shape and scale parameters k and θ, respectively. The
Gamma distribution was previously attributed to the infec-
tiousness of COVID-2 and COVID-19 [4]. We substitute the
estimates for COVID-19: R0 ≈ 3 and k ≈ 0.1.

Figure 1 depicts the decay of the factors contributing to
R(n), classified by their spreading types. In red: R(n); In
blue: Personal-trait pure contribution to R(n); In green:
Event-based pure contribution to R(n); In yellow: Mutual
contribution to R(n). As can be seen, the contribution of
the personal-trait spreading drops sharply at early stages
of the disease. On the other hand, the contribution of the
event-based spreading is affected very little at early stages.

This is because super-spreaders (individuals with high val-
ues of Sp and Ip) are likely to get infected early in the pan-
demic, and their resultant immunity then decreases the level
of personal-trait spreading. In contrast, any reduction of the
event-based spreading level is merely proportional to the de-
crease in susceptible members of the population, which is
linear in n, as it is identically distributed for all individuals.

In addition, we use our model to inspect the sensitivity
of the HIT to the social characteristics of a society. Per
Eq. (9), we find that the HIT value is very sensitive to p,
the relative weight of the spreading types, and thus differ-
ent societies may engender significantly different HITs. In
addition, and in accordance with previously reported results
[2, 4], the HIT is influenced by the coefficient of variation
(Cv) of the personal-trait spreading distribution, i.e. the
level of personal-trait spreading heterogeneity, and by the
correlation between the infectiousness and susceptibility.

This is demonstrated in Figure 2 which plots the HIT as
a function of both the relative weight p and the shape of the
personal spreading distribution (heterogeneity level). Note
that for a fully personal-trait society the HIT prediction
is as low as 5% (coinciding with [4]) and for a fully event-
based society it as high as 67%, coinciding with the allegedly

“axiomatic” cutpoint of the traditional homogeneous models
prediction.

Figure 2: The HIT as a function of p (relative
weight) and k (distribution shape) where R0 = 3.

5. CONCLUSIONS AND FURTHER WORK
We studied the effects of the spreading function composi-

tion on the spread of a disease in a given network, and on
the Herd Immunity Threshold. Having developed the model
and gained an understanding of the epidemic behavior in
a no-intervention environment, we can address operational
aspects and examine intervention measures, which suppress
the stochastic functions, including lockdowns and vaccina-
tion strategies. In further research we study the effects of
lockdowns on the HIT and the disease dynamics. Our model
reveals that the effect of lockdowns is very sensitive to their
focus: while event-based-targeted lockdowns act positively
by reducing HIT, personal-trait-targeted lockdowns increase
HIT and may be counter-productive. Furthermore, popula-
tion heterogeneity significantly affects vaccination strategies
efficacy.
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