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ABSTRACT
We study the problem of Conditional Value-at-Risk (CVaR)

optimization for a finite-state Markov Decision Process (MDP)
with total discounted costs and the reduction of this problem
to a stochastic game with perfect information. The CVaR op-
timization problem for finite and infinite-horizon MDPs can
be reformulated as a zero-sum stochastic game with a com-
pact state space. This game has the following property: while
the second player has perfect information including the knowl-
edge of the decision chosen by the first player at the current
time instance, the first player does not directly observe the aug-
mented component of the state and does not know current and
past decisions chosen by the second player. Using methods of
convex analysis, we show optimal policies exist for this game
and an optimal policy of the first player optimizes CVaR of the
total discounted costs. In addition to proving existence of op-
timal policies, we provide algorithms for their computation.

1. INTRODUCTION
Decision making in the Markov decision process (MDP)

framework is typically done in a risk-neutral setting, where the
objective is either the expected total discounted cost/reward
or average cos/reward per unit time. In recent works, CVaR
objective has gained considerable interest in MDPs because
it takes risk into an account. In particular [1] considered us-
ing the original CVaR functional on the discounted sum of the
costs, while [4] suggested a nested reformulation of the CVaR
functional. The reason for doing so is to obtain time consis-
tency and decomposability of the resulting risk functional in
the original state space. On the other hand, [1] wrote a CVaR
minimax equation on the risk level augmented state space, us-
ing the time consistent CVaR decomposition theorem from [2].

Conditional Value-at-Risk (CVaR) is a coherent risk func-
tion that is widely used in engineering and finance. For a ran-
dom variable Z defined on a probability space (Ω,F , P ), its
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CVaR for tail risk level α ∈ [0, 1] is a conditional tail ex-
pectation: CV aRα(Z) := E[Z|Z ≥ V aRα(Z)], where the
Value-at-Risk is V arα(Z) := min{z : FZ(z) ≥ 1− α}, and
FZ(z) = P{Z ≤ z} is the distribution function ofZ. For a σ-
algebra G on Ω such that G ⊂ F , the Pflug and Pichler CVaR
decomposition theorem [2, lemma 22] states that, for a con-
stant α ∈ [0, 1], CV aRα(Y ) = sup{E[ξ · CV aRαξ(Y |G) :

ξ is G−measurable, 0 ≤ αξ ≤ 1, and E[ξ] = 1}.
This paper deals with CVaR optimization for MDPs. An

MDP is a tuple (X,A, A(·), c, p), where X is a set of states
space, A is a set of actions space, and for each state x ∈ X
there is a nonempty set of available actions A(x) ⊂ A, and,
c is a cost function, and p is a transition probability. The time
t = 0, 1, ... is discrete, and if at some time instance an ac-
tion a ∈ A(x) is selected at a state x ∈ X, then the system
moves to the next state according to x′ ∼ p(·|x, a) and the cost
c(x, a, x′) is collected. Let β ∈ [0, 1] be a constant discount
factor. An initial stat x and a policy π define a probability
measure Pπx on the space of trajectories ((X× A)∞,B((X×
A)∞)), where B demotes a Borel σ-algebra. For a finite hori-
zon N the total discounted cost is the random variable ZN =∑N−1
t=0 βtc(xt, at) + βNv0(xN ) and for infinite-horizon it

is Z =
∑∞
t=0 β

tc(xt, at) where β < 1. In this work we
study minimizing objective criteria CV aRα(ZN ;x, π) for N-
horizon problems and CV aRα(Z;x, π) for infinite-horizon
problems, where α ∈ [0, 1], and (Ω,F , P ) = (Ω,F , Pπx ).

2. RISK-AUGMENTED STATE FORMU-
LATION OF CVAR MDP

We consider CVaR optimization in MDP for finite sets X
and A of states and actions respectively. Consider a finite N -
horizon problem. The objective of CVaR MDP is to solve, for
a given risk level α ∈ [0, 1] and an initial state x0 ∈ X,

min
π∈ΠH

CV aRα(ZN ;x0, π) (1)

where ΠH is the class of nonrandomized history-dependent
policies. Without loss of generality, we set X = {1, 2, . . . ,M}.
Following [2] and [3], define the CVaR risk envelope as:
UCV aR(α, p(·|x, a)) = {b ∈ RM : 0 ≤ αbx′ ≤ 1, x′ =



1, 2, . . . ,M,
∑M
x′=1 bx′p(x

′|x, a) = 1}, a convex polytope
which can be replaced with the set: B(x, α, a) = UCV aR(α,

p(·|x, a)) ∩ {b ∈ RM : bx′ = 0 if p(x′|x, a) = 0}.
Chow et al. [1] considered a state augmentation of the orig-

inal CVaR MDP problem where the augmented state (x, y) ∈
X (X = X × [0,1]) consists of an original physical state
x ∈ X and an assigned risk state y ∈ [0, 1] which indi-
cates the tail risk level of CVaR at any particular subprob-
lem. Hence for the initial stage problem we have the aug-
mented state (x0, y0 = α). The state-augmented CVaR MDP
is equivalent to a robust MDP on this augmented state space as
a result of the CVaR decomposition theorem in [2]. Let us de-
fine VN ((x, y), π) = y · CV aRy(ZN ;x, π) the scaled value
functions for a fixed policy π in this problem and let VN (x, y)

denote the scaled value functions for this problem which are
attained by the optimal policy, ∀(x, y) ∈ X. Results from [1]
can be extended to show that the scaled value functions sat-
isfy the following optimality equations, where we introduce
the scaled Q-factor functions:

Qn+1((x, y), a) = max
b∈B(x,y,a)

M∑
x′=1

(ybx′c(x, a, x
′)

+ βVn(x′, ybx′))p(x
′|x, a), ∀(x, y) ∈ X, a ∈ A(x),

(2)

and optimality equation for the finite horizon problem is:

Vn+1(x, y) = min
a∈A(x)

{Qn+1((x, y), a)},∀(x, y) ∈ X, (3)

for n = 0, 1, . . ., with V0(x, y) = yv0(x), ∀y ∈ [0, 1]. The
optimal action sets can be defined (when there are n stages left
in a finite horizon problem where n > 0) as A∗n(x, y) = {a ∈
A(x)|Qn((x, y), a) = Vn(x, y)}, ∀x ∈ X, y ∈ [0, 1], n =

1, 2, . . .. Similarly, for the infinite horizon case, we have,
Q((x, y), a) = maxb∈B(x,y,a)

∑M
x′=1(ybx′c(x, a, x

′) +

βV(x′, ybx′))p(x
′|x, a),∀(x, y) ∈ X, a ∈ A(x),

V(x, y) = mina∈A(x){Q((x, y), a)}, ∀(x, y) ∈ X,
and infinite horizon optimal action sets are defined asA∗(x, y)

= {a ∈ A(x)|Q((x, y), a) = V(x, y)}, ∀x ∈ X, y ∈ [0, 1].
Equations (2) and (3) are relevant to the robust MDP (X,A,

A(·),B, B(·), c,p), where the state space X = X × [0,1],

the action set A of player I is the set of actions in the original
MDP, for which the sets nonempty finite setsA(x) are defined.
For the robust MDP, we define A(x) = A(x, y) := A(x) for
all x = (x, y) ∈ X × [0, 1]. The space B = RM . For each
x = (x, y) ∈ X the action set fot player II is B(x, a) :=

B(x, y, a). If at state (x, y) ∈ X player I chooses an action
a ∈ A(x), and player II chooses an action b ∈ B(x, y, a),
then the next state will be (x′, yb′x) and the cost incurred will
be c((x, y, x′), a, b) = yc(x, a, x′) with the transition prob-
ability p((x′, yb′x)|(x, y), a, b) := bx′p(x

′|x, a), where x′ ∈
X. Optimality equations (2), (3) recursively define the scaled
value functions in this robust MDP, which is equal to the op-
timal tail risk level scaled CVaR value of the MDP problem

in (1). The problem becomes a worst-case robust MDP if
y0 = α = 0, and reduces to a risk neutral MDP if y0 = α = 1,
where classic value iteration algorithm can be directly applied.

In the general case when α ∈ (0, 1), the CVaR tail risk
level in the augmented MDP problem is explicitly known only
at the initial state. At the following steps it is changing and
may not be directly observed. In the robust MDP, the player
II controls risk, but there is no player II in the initial problem
formulation. To resolve this issue, we introduce the follow-
ing definition. A policy π for player I in the robust MDP
(X,A, A(·),B, B(·), c,p) is called autonomous if for each
t = 1, 2, . . . for each two histories h(i)

t = x
(i)
0 , y

(i)
0 , a

(i)
0 , b

(i)
0 ,

. . . , x
(i)
t , y

(i)
t ∈ Ht, i = 1, 2, such that y(1)

0 = y
(2)
0 , x

(1)
n =

x
(2)
n for n = 0, . . . , t, and a(1)

n = a
(2)
n for n = 0, . . . , t − 1,

then πt(·|h(1)
t ) = πt(·|h(2)

t ). The following theorem links the
CVaR MDP with the robust MDP.

THEOREM 2.1. There exists a nonrandomized autonomous
optimal policy π∗ minimizing CVaR of the total discounted
costs for an MDP with a finite or infinite horizon over the class
of nonrandomized policies. In addition, y·CV aRy(Zn;x, π∗)

= Vn(x, y),∀n = 1, 2, . . . , N and y · CV aRy(Z;x, π∗) =

V(x, y),∀(x, y) ∈ X.

3. CVAR VALUE ITERATION: SLOPE
CHARACTERIZATION

Lemmas below characterize the scaled value functions.

LEMMA 3.1. Vn(x, y) and Qn+1((x, y), a) are concave
and monotonically nondecreasing functions of y ∈ [0, 1] for
every n = 0, 1, . . ., state x ∈ X and action a ∈ A(x). More-
over, if state space and action space are finite, then these func-
tions are piecewise linear with finitely many linear segments.

It is in fact sufficient to characterize the current assigned risk
state in a finite horizon CVaR MDP via its slope on the optimal
value functions. This gives efficient implementations of the
CVaR value iteration algorithm that always produces an opti-
mal policy even under nonuniqueness of the adversary(nature)’s
optimal action in the robust MDP when it solves (2). For any
risk level y ∈ [0, 1] of the optimal value function Vn(x, y) for
the physical state is x and n stages left, define its left slope
(left derivative in y) and right slope by functions S−(n, x, y),
S+(n, x, y) with S−(n, x, y) ≥ S+(n, x, y). Define the lin-
ear segment on the function Vn(x, .) with slope s > 0 as:
D(n, x, s) = {y ∈ [0, 1] : S+(n, x, y) ≤ s ≤ S−(n, x, y)}.

LEMMA 3.2. Let A∗n(x, y) denote the optimal action set
for augmented state (x, y) with n stages left. If S−(n, x, y) =

S+(n, x, y), thenA∗n(x, y) ⊆ A∗n(x, z), ∀z ∈ [0, 1] such that
S−(n, x, y) = S−(n, x, z) or S−(n, x, y) = S+(n, x, z).
Lemma 3.2 implies that, ∀x ∈ X and n = 0, 1, . . ., for each
distinct slope s on the CVaR value functions Vn(x, .), we can
define its optimal action set as Ã∗n(x, s), which is a set of ac-
tions that are optimal for all risk levels y ∈ [0, 1] such that



S−(n, x, y) = s or S+(n, x, y) = s, i.e., y ∈ D(n, x, s). As
a consequence of Lemma 3.2, for all x ∈ X and y ∈ (0, 1),
Ã∗n(x, S−(n, x, y)) ∪ Ã∗n(x, S+(n, x, y)) ⊂ A∗n(x, y)

Based on the slope characterization we obtain the follow-
ing lemma for the propagation of slope values in the CVaR
Bellman equations (2), (3) corresponding to the robust MDP,
where costs are dependent on the next state. Let B∗n(x, y, a)

be the optimal response set at n stages left such that all vectors
∀b ∈ B∗n(x, y, a) are optimal solutions of the maximization
problem in (2) for respective Q-factor function Qn((x, y), a).

LEMMA 3.3. Given an augmented state (x, y) ∈ X at n
stages to go, let a ∈ Ã∗n(x, S−(n, x, y))∪Ã∗n(x, S+(n, x, y)).
If a ∈ Ã∗n(x, S−(n, x, y)), and at the next stage the physi-
cal state transitions to x′ ∈ X, then for all optimal response
vector of the nature(adversary) ∀b ∈ B∗n(x, y, a) which deter-
mines the next assigned risk state by y′ = ybx′ , we have:
S+(n−1, x′, y′) ≤ S−(n,x,y)−c(x,a,x′)

β
≤ S−(n−1, x′, y′).

The similar result holds for a ∈ Ã∗n(x, S+(n, x, y)).

In the developed algorithm, the piecewise linear scaled value
functions Vn(x, .) are represented by its slope sets Sn,x and
break-point sets Yn,x, where m(n,x) is the number of unique
slope segments: Sn,x = {s(1)

n,x, . . . , s
(mn,x)
n,x },Yn,x = {0 =

y
(0)
n,x, y

(1)
n,x, . . . , y

(mn,x−1)
n,x , y

(mn,x)
n,x = 1}. Subroutine 1 con-

structs value functions recursively based on the minimax equa-
tions (2), (3), using a piecewise linear representation. Subrou-
tine 2 characterizes propagation of slope information, which is
sufficient for optimal decision making at subsequent stages.
Subroutine 1: CVaR Value Function Construction with
Slope and Breakpoint Sets
Input: Slope sets Sn−1,x and break-point sets Yn−1,x, known
cost and transition probabilities c(x, a, x′) and p(x′|x, a), ∀x,
x′ ∈ X, a ∈ A(x), and known discount factor β.
1. ∀x ∈ X, a ∈ A(x), compute the slope set and the break-
point set of Qn((x, .), a), denoted as Sn,x,a = {s(1)

n,x,a, . . . ,

s
(mn,x,a)
n,x,a },Yn,x,a = {0 = y

(0)
n,x,a, y

(1)
n,x,a, . . . , y

(mn,x,a−1)
n,x,a ,

y
(mn,x,a)
n,x,a = 1}, where mn,x,a is the number of unique slope

values on Qn((x, .), a). Sn,x,a is the unique ordered list of
slope values: {c(x, a, x′) + βs

(i)

n−1,x′}x′∈X,i∈{1,...,mn−1,x′},
sorted in decreasing order. Define the following index set
J

(i),x′
n,x,a = {j ∈ {1, . . . ,mn−1,x′} : c(x, a, x′) + βs

(j)

n−1,x′ ≥
s

(i)
n,x,a}, ∀x, x′ ∈ X, a ∈ A(x), i = 1, . . . ,mn,x,a. Then
Yn,x,a is computed as, ∀i = 1, . . . ,mn,x,a (with y(0)

n,x,a = 0):
y

(i)
n,x,a =

∑
x′∈X

∑
j∈J(i),x′

n,x,a
p(x′|x, a)(y

(j)

n−1,x′−y
(j−1)

n−1,x′).

2. Using Sn,x,a and Yn,x,a, ∀x ∈ X, a ∈ A(x), compute the
slope set and break-point set representation of Vn(x, .), ∀x ∈
X, denoted as Sn,x = {s(1)

n,x, . . . , s
(mn,x)
n,x },Yn,x = {0 =

y
(0)
n,x, y

(1)
n,x, . . . , y

(mn,x−1)
n,x , y

(mn,x)
n,x = 1}. This is done by

taking Vn(x, y) = mina∈A(x) Qn((x, y), a), ∀x ∈ X, y ∈
[0, 1]. For all i ∈ {1, . . . ,mn,x}, store the optimal action sets
as Ã∗n(x, s

(i)
n,x) = {a ∈ A(x) : Qn((x, y), a) = Vn(x, y) =

mina∈A(x) Qn((x, y), a), ∀y ∈ [y
(i−1)
n,x , y

(i)
n,x]}.

3. Output the slope set and break-point set characterization of
Vn(x, .): Sn,x,Yn,x,∀x ∈ X, and the optimal action sets for
each slope segment at each state: Ã∗n(x, s), ∀x ∈ X, s ∈ Sn,x.
Subroutine 2: Slope Information State Propagation
Input: Current state x, n stages to go, a slope value s ∈
Sn,x and an optimal action take from a ∈ Ã∗n(x, s), observed
next state x′ and known cost c(x, a, x′), characterization sets
Sn−1,x′ and Yn−1,x′ for the next stage value function at x′.
1. Compute the desired slope value s′ = s−c(x,a,x′)

β
.

2. If s′ ∈ Sn−1,x′ , set s− = s+ = s′, this slope suffices for
making an optimal action in the next stage problem by taking
an action from Ã∗n−1(x′, s′). Otherwise, set s− = min{s ∈
Sn−1,x′ : s ≥ s′} and s+ = max{s ∈ Sn−1,x′ : s ≤ s′}.
3. Output the next slope information state: (x′, s−, s+).
Algorithm 1: Finite Horizon CVaR Value Iteration with
Slope Characterization
1. Set n = 0, V0(x, y) = yv0(x), ∀(x, y) ∈ X, which can be
represented by slope set and break-point set characterization
as S0,x = {v0(x)},Y0,x = {0, 1}, ∀x ∈ X.
2. For n = 1, . . . , N : use subroutine 1 to compute Vn(x, y),
∀(x, y) ∈ X, following (2) and (3), with input slope sets
and break-point sets Sn−1,x,Yn−1,x, ∀x ∈ X. The output
slope set and break-point set characterization of Vn(x, .) is
stored as Sn,x,Yn,x, ∀x ∈ X. Store optimal action sets as
Ã∗n(x, s),∀x ∈ X, s ∈ Sn,x.
3. For t = 0, . . . , N − 1: the current risk augmented state
(xt, yt) with N − t stages to go is characterized by the slope
information state tuple (xt, s

−
t , s

+
t ), which is known exactly at

the initial stage. Perform an optimal action at ∈ Ã∗N−t(xt, s∗t )
where s∗t = s−t or s+

t , observe the next physical state xt+1 ∈
X and incur cost c(xt, at, xt+1). Use subroutine 2 to identify
the next augmented state (xt+1, s

−
t+1, s

+
t+1). (If s−t+1 > s+

t+1,
the next assigned risk state yt+1 can be exactly identified.)

THEOREM 3.4. Algorithm 1 always outputs an optimal non-
randomized autonomous policy that minimizes the N-step CVaR
value starting from any fixed x0 ∈ X, y0 = α ∈ [0, 1].

Results similar to Lemma 3.2 and 3.3 can be generalized to the
infinite horizon setting, where we can obtain an algorithm that
computes an ε-optimal nonrandomized autonomous policy.
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