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ABSTRACT
We study a sequential matching problem faced by large cen-
tralized platforms where “jobs” must be matched to “work-
ers” subject to uncertainty about worker skill proficiencies.
Jobs arrive at discrete times (possibly in batches of stochas-
tic size and composition) with “job-types” observable upon
arrival. To capture the “choice overload” phenomenon, we
posit an unlimited supply of workers where each worker is
characterized by a vector of attributes (aka “worker-types”)
sampled from an underlying population-level distribution.
The distribution as well as mean payoffs for possible worker-
job type-pairs are unobservables and the platform’s goal is
to sequentially match incoming jobs to workers in a way that
maximizes its cumulative payoffs over the planning horizon.
We establish lower bounds on the regret of any matching
algorithm in this setting and propose a novel rate-optimal
learning algorithm that adapts to aforementioned primitives
online. Our learning guarantees highlight a distinctive char-
acteristic of the problem: achievable performance only has
a second-order dependence on worker-type distributions; we
believe this finding may be of interest more broadly.
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1. INTRODUCTION
Background and motivation. The problem of sequen-

tially matching “jobs” to “workers” under uncertainty forms
the bedrock of many modern operational settings, especially
in the online gig economy, see, e.g., applications such as
Amazon Mechanical Turk, TaskRabbit, Jobble, and the likes.
A simpler instance of the problem dates back to [1] where it
is referred to as the sequential stochastic assignment prob-
lem (SSAP). A fundamental issue in such settings is that the
platform typically is oblivious (at least initially) to the skill
proficiencies of individual workers for specific job categories.
This complexity is further compounded by the large number
of workers usually present on such platforms, tantamount
to prohibitively large experimentation costs associated with
acquisition of granular information at the level of an individ-
ual worker. This issue is commonly mitigated by exploiting
structure in the problem (if any), or by positing distribu-
tional assumptions on the population of available workers,
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e.g., workers may be drawn from some distributionD satisfy-
ing certain context-specific desiderata. Such distributional
assumptions are vital to designing efficient algorithms for
these systems, and as such, traditional literature has largely
relied on the availability of ex ante knowledge of D or certain
key aspects thereof (see, e.g., [3, 2], etc.)

Key research question. An important characteristic of
the gig economy is that the population of workers may un-
dergo distributional shifts over the course of the platform’s
planning horizon. These effects may, many a time, fail to
register in a timely manner; as a result, there may be de-
lays in tailoring appropriately the matching algorithm (cal-
ibrated typically using available distribution-level informa-
tion) to the changed environment. This has the potential to
cause revenue losses as well as catalyze endogenous worker
attrition. Such exigencies necessitate designing algorithms
that are agnostic to D and whose performance is robust to
plausible realizations thereof.

The model at a glance. We consider a finite set of
possible job-types (denoted by J ), an assumption we deem
appropriate for settings such as those discussed above. In
addition, we model workers as exhibiting discrete skill-levels
(aka worker-types), indexed by {1, ...,Kj}, w.r.t. each job-
type j ∈ J , and assume that (Kj : j ∈ J ) is known a priori.
It is not unreasonable to make this assumption since it is
common, in practice, for platforms to deploy pilot experi-
ments prior to the actual matching phase in order to gather
sufficient information on key primitives such as the size and
stability of low-dimensional sub-population clusters, if any
exist; one can therefore safely assume in settings where such
structure exists that (Kj : j ∈ J ) is well-estimated a priori.

While the demand is constituted by sequential job-arrivals
(possibly in batches of stochastic size and composition), we
posit availability of an unlimited number of workers on the
supply side. This feature encapsulates the choice overload
phenomenon characteristic of many large market settings
where workers are available in a large number relative to
the platform’s planning horizon. To our best knowledge,
extant literature on matching under uncertainty is largely
limited to “finite” markets and therefore fails to accom-
modate this important practical consideration. In our set-
ting, the population of workers, albeit large, is governed
by a finitely supported distribution that controls the pro-
portion of each worker-type. Specifically, the Kj distinct
worker-types w.r.t. job-type j are distributed according to

αj := (αi,j : i = 1, ...,Kj), where
∑Kj

i=1 αi,j = 1. We note
that this is one possible model of a matching market that is
closer in spirit to SSAP [1]; it differs from other models in



the matching literature (see, e.g., [2]) in that it tries to cap-
ture a salient aspect of large markets, viz., choice overload,
as opposed to aspects such as competition and congestion
best elucidated via traditional “finite” market models.

The platform’s goal is to maximize its expected cumula-
tive payoffs over a sequence of n rounds of matching, sub-
ject to worker-types w.r.t. job-types and their distributions
{αj : j ∈ J }, as well as mean payoffs for possible worker-
job type-pairs being latent attributes. As is the norm in
settings with incomplete information and imperfect learn-
ing, we reformulate this objective as minimizing the expected
cumulative regret relative to an oracle that is privy to afore-
mentioned primitives.

2. PROBLEM FORMULATION
Job-arrival process. The platform faces an arrival stream

of jobs (i.i.d. in time) given by {(Λj,t : j ∈ J ) : t > 1}, where
J is finite and Λj,t is the number of type j jobs arriving at
time t. Types and multiplicities of jobs are perfectly observ-
able upon arrival. We assume that there exists some finite
constant M > 0 s.t. P

(
maxj∈J supt>1 Λj,t 6M

)
= 1. Note

that our algorithms do not require knowledge of M ; the as-
sumption only serves to simplify analysis and can be relaxed
under suitable conditions on the tail distribution of Λj,t’s.

Supply of workers. We assume that workers are dis-
tributed on the unit interval [0, 1] according to some proba-
bility distribution D that is absolutely continuous w.r.t. the
Lebesgue measure on [0, 1]. Associated with each job-type
j ∈ J , there exists a permutation σj := {σj(i) : i = 1, ...,Kj}
of {1, ...,Kj}, and a sequence of thresholds 0 =: λ0,j <
λ1,j < ... < λKj−1,j < λKj ,j := 1 partitioning the unit
interval into Kj disjoint sub-intervals. We posit a pay-
off model whereby a worker x ∈ (λi−1,j , λi,j) (for some
i ∈ {1, ...,Kj}) generates a stochastic reward with mean
µσj(i),j upon match with a type j job; it is assumed that
the Kj mean rewards adhere to the strict order µ1,j >
... > µKj ,j . Define µj := (µi,j : i = 1, ...,Kj). Also de-

fine αi,j := P
(
X ∈

(
λι(i,j)−1,j , λι(i,j),j

))
, where X ∼ D

and ι(i, j) ∈ {1, ...,Kj} is the unique element satisfying
σj (ι(i, j)) = i, as the probability that a worker sampled
at random from D (equivalently, from the population), is
ith best for job-type j (generates mean reward µi,j); such
a worker is said to have type i w.r.t. job-type j. Thus, a
type 1 worker w.r.t. job-type j is optimal for jobs of type
j. Define αj := (αi,j : i = 1, ...,Kj). Note that the model
allows for staggered optimality of worker-types; see Figure 1.
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Figure 1: Possible distribution of worker-types for
J = {1, 2} and K1 = K2 = 2. The darker shades
represent type 1 (optimal) workers while the lighter
shades represent type 2 (inferior) workers w.r.t.
each job-type in J . In this example, no worker can
simultaneously be optimal for both job-types.

High-level description of the matching problem.
Each arriving job may be matched one-to-one to a worker
from the available supply. Each match takes one period
for execution, it is therefore possible to match jobs arriv-
ing in consecutive periods to the same worker. Matched

jobs leave the system upon completion and the platform
receives a stochastic reward for each completed job; a job
that remains unmatched drops out instantaneously. The
platform has information neither on individual worker-types
w.r.t. job-types nor on their supply distribution, however,
it has perfect knowledge of (Kj : j ∈ J ). Subject to this
premise, the platform must match incoming jobs to work-
ers in a way that maximizes its expected cumulative payoffs
over n rounds of matching.

Adaptive control. For any job that arrives at time t, the
platform can match it to: (i) a worker that has matched be-
fore, (ii) a new worker (one without any history of matches)
sampled from the population, or (iii) no worker (job gets
dropped in this case). A policy π := (π1(·, ·), π2(·, ·), ...), to
this end, is an adaptive rule that prescribes the allocation
πt(·, ·) at time t. Specifically, πt(j, k) encodes the worker
that should match with the kth job of type j arriving at
time t (provided there are at least k job-arrivals of type j
at t and the kth job is not dropped). Upon match, a [0, 1]-
valued stochastic reward with mean µκj(πt(j,k)),j is realized,
where κj (πt(j, k)) ∈ {1, ...,Kj} denotes the type of worker
πt(j, k) w.r.t. job-type j. The realized rewards are indepen-
dent across matches and in time.

Platform’s objective. The goal of maximizing the ex-
pected cumulative payoffs over n rounds is converted to min-
imizing the expected regret relative to a clairvoyant policy
that prescribes an “optimal” match for each arriving job.
We are thus interested in the following optimization prob-
lem

inf
π∈Π

ERπn := inf
π∈Π

E

 n∑
t=1

∑
j∈J :Λj,t>1

Λj,t∑
k=1

(
µ1,j − µκj(πt(j,k)),j

) .
(1)

Here, Π is the class of non-anticipating policies, i.e., πt+1(·, ·)
is adapted to Ft for each t ∈ {0, 1, ...}, where Ft denotes the
natural filtration at time t, i.e., Ft := σ {(Λs,πs, rs) : s 6 t}.
Here, Λs := (Λj,s : j ∈ J ), πs is the set of matches imple-
mented at time s and rs is the set of collected rewards. The
expectation in (1) is w.r.t. the randomness in job-arrivals,
worker supply, policy, and rewards.

Going forward, we will adopt standard terminology from
the multi-armed bandit literature and refer to workers as
“arms” and jobs as “pulls” interchangeably.

3. HIGH-LEVEL OVERVIEW OF RESULTS
On the complexity of the problem. Even with a

unique job-type, say J = {j0}, and only one job arriving
per period, the ensuing allocation problem is challenging to
analyze on account of the distribution αj0 and any statisti-
cal properties of the rewards being unknown. In the simplest
possible formulation, Kj0 = 2, and the statistical complex-
ity of the corresponding regret minimization problem is gov-
erned by three principal primitives: (i) the sub-optimality
gap ∆j0

:= µ1,j0−µ2,j0 > 0 between the mean rewards of the
optimal and inferior worker sub-populations; (ii) the proba-
bility α1,j0 of sampling an optimal worker from the popula-
tion; and (iii) the planning horizon n. One may aptly recog-
nize this as an infinitely many-armed bandit problem (where
arms are synonymous to workers) with an arm-reservoir dis-
tribution (α1,j0 , 1− α1,j0) and a mean reward gap of ∆j0

.
However, this model differs from the classical literature on
infinite-armed bandits in that its arm-reservoir distribution



is not endowed with any regularity properties (see, e.g.,
[3]), instead we only posit a finite support with cardinal-
ity known to the decision maker (in this case, a cardinality
of two), absent however, knowledge of the associated prob-
ability masses (in this case, αj0,1 and 1 − αj0,1). In our
setting, absence of information on α1,j0 significantly exacer-
bates the difficulty of analysis as calibrating exploration be-
comes challenging (on account of a “large” number of arms).
In particular, how many arms must one query from the arm-
reservoir in order to have at least one optimal arm in the
queried set with high probability, is difficult to answer if (a
lower bound on) the proportion α1,j0 of optimal arms is un-
known. Consequently, any finite consideration set may only
contain inferior arms and as a result, any algorithm limited
to such a selection will suffer a linear regret. One may con-
trast this setting with its classical two-armed counterpart
with gap ∆j0

where the binary action space is key to de-
signing rate-optimal policies. In our setting, on the other
hand, it remains a priori unclear if there even exists a policy
capable of achieving sub-linear regret.

Contributions. In this work, we resolve several foun-
dational questions pertaining to complexity and achievable
performance in the matching problem described earlier. We
propose an algorithm that achieves a finite-time instance-
dependent expected regret of O (logn) after n rounds and
prove that this performance cannot be improved w.r.t. n.
While the order of regret and complexity of the problem sug-
gests a great degree of similarity to the classical stochastic
finite-armed bandit problem, properties of the performance
bounds and salient aspects of algorithm design are quite
distinct from the latter, as are the key primitives that de-
termine complexity along with the analysis tools needed to
study them. In what follows, we will for expositional reasons
assume J = {j0} with jobs arriving one at a time whenever
|J | = 1. Our theoretical contributions can then summarized
as under:

Complexity of regret when |J | = 1. We establish
information-theoretic lower bounds on regret that are order-
wise tight (in the horizon n) in the instance-dependent set-
ting. In addition, we establish a uniform lower bound on
achievable performance (also tight in n) that captures ex-
plicitly the scaling behavior w.r.t. the fraction α1,j0 of
optimal arms; this is shown via a novel non-information-
theoretic proof based entirely on convex analysis.

Algorithm design and achievable performance. We
propose a policy that is rate-optimal (in n) in the instance-
dependent sense. Our policy only relies on knowledge of
Kj0 , is agnostic to the distribution αj0 of worker-types as
well as their rewards. Furthermore, its regret only has a
second-order dependence on αj0 (see below).

Performance bounds for general J . Aforementioned
results for |J | = 1 and jobs arriving one at a time are then
translated to the general (matching) version of the problem
described earlier, where J can be any arbitrary finite set
and jobs may arrive in batches of stochastic size and com-
position. In the matching problem, we establish that regret
after any number n > 1 of rounds is bounded above by∑
j∈J (C1 (µj) logn+ C2 (µj ,αj) log logn) under our pol-

icy tailored to this setting, where the constants C1(·), C2(·, ·)
only depend on their arguments, µj and αj . Moreover,
when Kj = 2 for each j ∈ J , we improve this guaran-
tee to

∑
j∈J (C1 (µj) logn+ C2 (µj ,αj)). It is noteworthy

that the upper bound depends on {αj : j ∈ J } only through

o(logn) terms (second-order dependence). We believe this
finding may be of interest more broadly.

4. THEORETICAL RESULTS
Theorem 1 (Information-theoretic lower bounds).

Fix j ∈ J . Suppose that for each t = 1, 2, ..., we have
Λj,t = 1 and Λj′,t = 0 ∀ j′ ∈ J \{j}. Also suppose that
Kj = 2 with α1,j 6 1/2− ε, where ε ∈ (0, 1/2) is arbitrary.
Let Πadm denote the class of admissible policies. Then, the
following is true under any π ∈ Πadm:

(i) For any ∆j > 0, there exists a problem instance ν
such that ERπn (ν) > C logn/∆j for n large enough
(depending on ε), where C is some absolute constant.

(ii) For any n ∈ N, there exists a problem instance ν such
that ERπn (ν) > εC

√
n.

Theorem 2 (αj-dependent lower bound). Fix j ∈
J . Suppose that for each t = 1, 2, ..., we have Λj,t = 1
and Λj′,t = 0 ∀ j′ ∈ J \{j}. Also suppose that α1,j 6 1/2.
Denote by Πm the class of “memoryless” policies under which
the decision to match an incoming job to a new worker at
any time t ∈ {1, 2, ...} is independent of Ft−1. Then, for all
problem instances ν with a minimal sub-optimality gap of at
least ∆j > 0, lim infn→∞ infπ∈Πm ERπn (ν)/logn > ∆j/4α1,j.

Remarks. (i) It is not impossible to avoid 1/α1,j-scaling
in the instance-dependent logarithmic regret. We will next
show via an upper bound for a policy called MATCH that the
α1,j-dependence can, in fact, be relegated to sub-logarithmic
terms (MATCH samples new workers from the population adap-
tively based on the sample-history of onboarded workers
and therefore does not belong to Πm). Importantly, this
will establish a somewhat surprising fact that the instance-
dependent logarithmic bound in Theorem 1 is optimal w.r.t.
to its dependence on α1,j (ii) Theorem 2 holds also for any
worker supply where the optimal mean reward w.r.t. job-
type j is at least ∆j-separated from the rest, the nature of
worker-types (countable or uncountable) notwithstanding.

Theorem 3 (Achievable performance). Denote the
policy MATCH by π. Then, after any number n > 1 of rounds,

ERπn 6 CM
∑
j∈J

[
K3
j ∆̄j

βδj ,Kj

(
logn

δj
2 +

log log (n+ 2)

Kj !
∏Kj

i=1 αi,j

)]
, (2)

where ∆̄j := µ1,j − µKj ,j, δj := min16i<i′6Kj
(µi,j − µi′,j),

βδj ,Kj is a constant that depends exclusively on (δj ,Kj), and
C is some absolute constant.

Remark. When Kj = 2 ∀ j ∈ J , the O (log logn) term
in (2) can be improved to O(1). In fact, we conjecture this
to be true also for Kj > 2; pursuits are left to future work.
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