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ABSTRACT
The consensus reached in stochastic consensus formation is
a random variable whose distribution is generally difficult
to determine analytically. We show that the time rever-
sal process for the stochastic consensus formation process is
ergodic. This fact allows us to numerically obtain the dis-
tribution for the consensus by observing the time reversal
process for consensus formation for a fixed sample path.

1. INTRODUCTION
Consensus formation is a problem in which agents with

initially different opinions mutually exchange and update
their opinions using a distributed algorithm to achieve a con-
sensus. This problem has appeared in various contexts [3],
including distributed computation, load balancing in com-
puter networks, distributed data fusion or clock synchroniza-
tion in sensor networks, coordinate control of mobile agents,
and opinion formation in social networks.

In some consensus formation algorithms, agents are stochas-
tically selected for exchanging and updating their opinions
at each opinion update epoch. Such consensus formation
algorithms can be referred to as stochastic consensus for-
mation algorithms. The consensus obtained in stochastic
consensus formation is not a constant, but a random vari-
able [4, 2]. It is desirable to know the distribution of the
obtained consensus a priori when applying a consensus for-
mation algorithm to engineering problems such as sensor
data fusion and coordinate control of mobile agents; how-
ever, it is generally difficult to determine the distribution of
the reached consensus analytically. To numerically obtain
the distribution of consensus results, it is necessary to carry
out a large number of simulations with different seeds for
random number generation.

In this paper, we study the time reversal process for stochas-
tic consensus formation. In particular, we show that this
time reversal process is ergodic. This fact allows us to nu-
merically obtain the distribution of the consensus by observ-
ing the time reversal process for consensus formation in only
one simulation.

The remainder of the paper is organized as follows. In
Sec. 2, we explain the mathematical model for stochastic
consensus formation. Then, in Sec. 3.1, we show the ergod-
icity of the time reversal process and, using a few numerical
examples, we explain how it can be used to obtain the dis-
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tribution of the consensus.

2. STOCHASTIC CONSENSUS FORMATION
2.1 Model

We consider N agents interacting over a directed graph.
The agents are numbered from 1 to N . Each agent has
its own opinion, which is expressed as a real number. The
agents exchange and update their opinions at discrete times

t ∈ N def
= {0, 1, 2, . . . }. Let xn(t) ∈ R denote the opinion of

agent n at time t and let x(t) denote a row vector whose
elements are equal to the opinions of agents at time t; that
is, x(t) = (x1(t), · · · , xN (t)). At time t, x(t) is updated to
x(t+ 1) using the following equation:

x(t+ 1)T = Q(et)x(t)T, (1)

where Q(et) is a non-negative matrix, referred to as the
opinion-update matrix in this paper, that expresses the opin-
ion updates at time t. We assume that there are K types of
opinion-update matrix. et ∈ {1, . . . ,K} denotes a random
variable that expresses the type of opinion-update matrix
used at time t. e0, e1, . . . are independent and identically
distributed. Note that in stochastic consensus formation,
the opinion-update matrix is not unique and different ma-
trices are used at each opinion update epoch. We assume

that Q(k) = {q(k)ij } (k = 1, . . . ,K) is a stochastic matrix;
that is, the sum of elements in each row is equal to 1. It
follows from (1) that

E[x(t+ 1)|x(t)] = Qx(t)T, Q
def
=

N∑
k=1

pkQ
(k), (2)

where pk = P (et = k). Note that Q is also a stochastic
matrix. If a random variable xc exists and satisfies

lim
t→∞

x(t) = xc1, a.s., 1
def
= {1, . . . , 1},

then we say that a consensus is reached and that it is equal
to xc. It has been proved [2] that a consensus is reached if

Q is irreducible1. We define X̄(t)
def
= πx(t)T, where π is the

left eigenvector of Q corresponding to the largest eigenvalue;
π is normalized so that the sum of elements is equal to
1. If a consensus is reached, limt→∞ X̄(t) = xc holds with
probability 1 and E[X̄(t)] = xc [2].

1Although [2] considered broadcast-based consensus forma-
tion, its proof is applicable to general stochastic consensus
formation.



2.2 Example of Stochastic Consensus Forma-
tion Algorithm

Broadcast-based consensus formation is a type of stochas-
tic consensus formation where one of the agents is selected
to broadcast its opinion to its neighbors. Each agent that
has received its neighbor’s opinion calculates the weighted
average of its opinion and the received opinion, and replaces
its opinion with the calculation result. Let Q(k) denote the
opinion-update matrix when agent k broadcasts its opin-

ion. The non-diagonal elements of Q(k), q
(k)
ij (i ̸= j), are

expressed as

q
(k)
ij =

{
akirk
ϵri+rk

, j = k

0, otherwise

where ri(≥ 0) denotes a parameter, called the influence pa-
rameter, that indicates the strength of the influence on the
opinions of other agents, and aij expresses the existence of
a directed link from agent i to agent j. If a directed link ex-
ists, then aij = 1; otherwise, aij = 0. Parameter ϵ indicates
the strength of interaction between agents. A smaller value
of ϵ indicates stronger interaction between agents.

The gossip algorithm is a type of stochastic consensus
formation algorithm where a pair of agents connected via a
bi-directional link is stochastically selected to exchange and
update their opinions at each opinion update time. Assume
that agents k1 and k2 are selected for updating the opin-
ions in the kth type of opinion update. The non-diagonal

elements of Q(k) are all equal to zero, except for q
(k)
k1k2

and

q
(k)
k2k1

, which are respectively given as

q
(k)
k1k2

=
rk2

ϵrk1 + rk2

, q
(k)
k2k1

=
rk1

rk1 + ϵrk2

.

3. ERGODICITY OF TIME REVERSAL PRO-
CESS OF CONSENSUS FORMATION

3.1 Ergodicity of Time Reversal Process
Using (1), we can express x(t) as follows.

x(t)T = Q(et−1) × · · · ×Q(e0)x(0)T.

Define

y(t)T
def
= Q(e0) × · · · ×Q(et−1)x(0)T, Ȳ (t)

def
= πy(t)T,

where y(t) can be regarded as a time reversal process for
x(t). Because e0, e1, . . . are independent and identically dis-
tributed, Ȳ (t) and X̄(t) have the same distribution.

In the following, we assume that et (t ∈ N) is a random
variable in probability space (Ω,F , P ) (et : Ω → {1, . . . , N}).
On (Ω,F , P ), a measurable map θ : Ω → Ω and a random
variable e exist; they satisfy

et(ω) = e(θtω), (et = e ◦ θt).

For each ω ∈ Ω, there exists ωr ∈ Ω that satisfies

∀t ∈ Z, et(ω) = e−t(ωr),

where Z denotes the set of whole integers. Let ξ : Ω → Ω be
a measurable map that relates ω and ωr such that

∀ω ∈ Ω, ωr = ξω.

Assume that θ and ξ are measure-preserving; that is, P (θA) =
P (A) and P (ξA) = P (A) for all A ∈ F . We also assume

that θ is ergodic. Because

et = e−t ◦ ξ = e ◦ θ−tξ = es ◦ θ−s−tξ,

it follows that

Ȳ (t) = πQ(e0) × · · · ×Q(et−1)x(0)T

= πQ(et−1◦θ1−tξ) × · · · ×Q(e0◦θ1−tξ)x(0)T

= X̄(t) ◦ θ1−tξ.

Thus, we obtain

lim
n→∞

1

n

n∑
t=1

Ȳ (t) = lim
n→∞

1

n

n∑
t=1

X̄(t) ◦ θ1−tξ. (3)

Because X̄(t) converges to xc with probability 1 as t →
∞, we can expect that the right-hand side of the above
equation will be equal to E[xc]. In fact, we can prove the
following theorem. (Because of space limitations, the proof
is omitted.)

Theorem 1.

lim
n→∞

1

n

n∑
t=1

Ȳ (t) = E[xc], a.s.

Because E[Ȳ (t)] = E[X̄(t)] = E[xc], Theorem 1 means that
time reversal process Ȳ (t) is ergodic. By the same argu-
ments, we also obtain

lim
n→∞

1

n

n∑
t=1

1(Ȳ (t)≤a) = P (xc ≤ a). (4)

3.2 Iterated Random Functions
We can express Ȳ (t) in the following form:

Ȳ (t) = x(0)ỹ(t)T, ỹ(t)T
def
= Q(et−1)

T
× · · · ×Q(e0)

T
πT,
(5)

where ỹ(t) can be viewed as a process constructed by the
following iterated random functions:

ỹ(1)T = fe0(π
T), ỹ(2)T = fe1(ỹ(1)

T) = (fe1 ◦ fe0)(π
T),

ỹ(t)T = fet−1(ỹ(t− 1)T) = (fet−1 ◦ · · · ◦ fe0)(π
T),

where fen
def
= Q(en)T. We also see that

X̄(t) = x(0)x̃(t)T, x̃(t)T
def
= (fe0 ◦ · · · ◦ fet−1)(π

T),

and thus x̃(t) is the reverse process of ỹ(t). It was shown
in [1] that, under some regularity conditions (Theorem 1.1
in [1]), a forward process constructed by iterated random
functions has a unique stationary distribution and moves
ergodically, whereas the corresponding reverse process con-
verges almost surely to a limit. Based on the discussion in
Sec. 3.1, consensus formation and its time reversal process
correspond to the pair of forward and reverse processes dis-
cussed in [1]. The discussion in Sec. 3.1 also shows that the
irreducibility of Q, a condition that ensures that consensus
is reached almost surely, is a sufficient condition for satis-
fying the regularity conditions of Theorem 1.1 in [1] in the
problem of consensus formation.
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(a) Consensus formation
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(b) Time reversal process

Figure 1: Consensus formation and its time reverse (broadcast)
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(a) Consensus formation
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Figure 2: Consensus formation and its time reversal (gossip)

3.3 Applications
Equation (5) indicates that the time reversal process Ȳ (t)

can be constructed by observing e0, e1, . . . in normal time
order. If Ȳ (t) is observed for some duration with a fixed
sample path, the distribution of the consensus can be ob-
tained through (4). Suppose that we want M samples of
the consensus to know its distribution and it takes T up-
dates of opinions to almost reach a consensus. Then, we
have to conduct M different T -time-unit simulations when
an update of opinions takes one time unit; therefore, the
simulation runs for a total of TM time units. The distribu-
tion of the consensus can also be obtained by observing the
time reversal process Ȳ (t) from t = T̃ + 1 to t = T̃ + M̃ in

one simulation, where T̃ is the mixing time and M̃ should
be somewhat larger than M because Y (T̃ +1), Y (T̃ +2), . . .

are not independent but correlated. If T ≈ T̃ ≪ M̃ ≪ MT ,
however, the latter requires a much shorter time than the
former because M̃ + T̃ ≪ MT .

Figure 1(a) shows the time change of the opinions of agents
in broadcast-based consensus formation for 100 agents con-
nected by a directed network, which was generated by estab-
lishing a directed link between each agent pair with proba-
bility 0.3. The initial opinions of agents were given according
to the uniform distribution between −1 and 1. Parameter ϵ
was set at 1. The influence parameter {ri}Ni=1 was given as

ri = max{N(1, 0.2), 0},

where N(1, 0.2) denotes a random variable that follows a
Gaussian distribution with mean 1 and variance 0.2. As
shown in Fig. 1(a), the opinions of agents quickly reached a
consensus. Figure 1(b) shows the time change of Ȳ (t) ob-
tained in the same setting. As shown, Ȳ (t) did not converge
to a fixed real number. Figures 2(a) and 2(b) respectively
show the time change of the opinions of agents and the time
change of Ȳ (t) in gossip-based consensus formation when
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(b) Gossip

Figure 3: Comparison of probability density functions for con-
sensus obtained by three methods

N = 100 and ϵ = 4. The initial opinions and the influ-
ence parameters for agents were the same as those in the
broadcast-based consensus formation experiments. The re-
sults in Figs. 2(a) and 2(b) are similar to those in Figs. 1(a)
and 1(b), but the time required to reach consensus is much
longer and the range of Ȳ (t) values is much narrower than
those for broadcast-based consensus formation.

Figure 3(a) shows three probability density functions for
the consensus; the red curve is the one obtained by conduct-
ing 104(= M) simulations with different random seeds when
T = 200, the blue curve is the one obtained by observing
the time reversal process in one simulation when T̃ = 200
and M̃ = M(= 104), and the black curve is the one ob-

tained by running the time reversal process when T̃ = 200
and M̃ = MT − T̃ (≈ 106). Note that for the red and
black curves, the simulation ran for the same total length
of time (2× 106 time units), which was longer than that re-
quired for the blue curve (104 + 200 time units). The black
curve is much smoother than the blue curve. That is, for
a given length of time, observing the time reversal process
is much more efficient for obtaining the distribution. The
red and blue curves are almost equally smooth. Figure 3(b)
shows three probability density functions for the consensus
in gossip-based consensus formation. We set T = T̃ = 8000
and M = M̃ = 105. The black curve is much smoother than
the red and blue curves. The red curve is less smooth than
the blue curve because Ȳ (t) is a rather strongly correlated
process, as shown in Fig. 2(b).
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