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1. INTRODUCTION
A variety of today’s critical applications are based on

queueing networks whose performance, mainly delay, de-
pends on routing and resource allocation. These include
computer networks (the Internet), load-balancers on cloud
systems and vehicular traffic networks.

These applications are vulnerable to malicious attacks
which may include the dis-functioning of the network com-
ponents by malwares, or other computer viruses. For com-
puter networks there are many references (e.g., [1, 5]); for
vehicular traffic networks see navigation platforms attacks
(e.g., Waze [4]).

Such attacks will increase the delay experienced in the net-
work and degrade its performance. We aim at understanding
what are the weak-points of such networks. That is, how can
a sophisticated attacker cause the maximal damage to the
network using minimal attacking power. Furthermore, we
are interested in analyzing how flexible is the network in re-
acting to such attacks by re-routing its traffic, and whether
such flexibility grants significant protection.

An intriguing question, which we aim at addressing and
which may affect network planning, is what will be the na-
ture of an optimal attack: will it be concentrated at few
nodes of the network, or would it be scattered over many
regions (nodes).

Prior works (e.g., [1, 3, 5]) that dealt with such worst-
case attacks on distributed systems did not address queueing
delays and their effects.

To allow analytic treatment that will reveal the nature of
these networks, we consider here a simplistic queueing model
based on k queues which captures the main features of these
networks: (i) Multi-commodity arrival flows, (ii) The ability
of the network to migrate requests (users) from one route
to another. Treatment of general structure networks is the
subject of ongoing research which is based on this work.

Our analysis reveals somewhat surprising properties: The
nature of an optimal attack varies as a function of the system
parameters, and may shift from fully concentrated to fully
scattered in the extreme cases. This is in contrast to the (no
queueing) model and results of [5] which asserted that op-
timal attacks are concentrated, even when the system can
defend itself using requests migration. This suggests that
queueing mechanisms and the consideration of queueing de-
lays may cause scattering of optimal attacks.
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2. MODEL AND APPLICATIONS
We consider networks consisting of k M/M/1 queues which

we denote regions (modeling k distributed data-centers, or
k different highways), with capacities of (c1, . . . , ck). We as-
sume that the flow in the network is multi-commodity. I.e.,
it consists of k different Poisson flows, (λ1, . . . , λk), where
λi is the arrival rate (of requests) to queue i. See Fig. 1(a).

Under this setting, we have in mind several systems at
risk both in the cyber and physical domains, including: (i)
Real-time distributed cloud services whose data-centers (re-
sources) are distributed over k regions. Each region has
a local demand within the region, and a capacity of re-
sources. (ii) A simplistic model of vehicular traffic networks,
where the system routes arriving vehicles through alterna-
tive roads. (iii) A simplistic model of data networks.

The expected time in system (delay) spent by an arbitrary
request (representing a packet, vehicle, etc.) is given by:

T =

k∑
i=1

λi
Λ
· Tµ,ci,λi (1)

where Λ :=
∑k
i=1 λi, and Tµ,c,λ is the sojourn time at an

M/M/1 queue with capacity c and mean job length 1/µ, and
is given by Tµ,c,λ := 1

µ·c−λ [2].

Figure 1: Multi-commodity 2-regions system.

Traffic Migration. Many real-world systems may balance
delays using requests migration (e.g., providing service to
users located in region i using the data-centers in region j,
or by navigating drivers to a farther yet empty highway).
Requests which are transferred between regions may possi-
bly incur an additional transition delay which we assume to
be constant and denote by t. This is in addition to experi-
encing the queue sojourn time expressed by Tµ,c,λ.

Denote by λ̂ = (λ̂1, . . . , λ̂k) the flows resulting from this
migration. For example, if region i experiences an increased
delay, part of that region’s arriving requests, say δ, can be
shifted to some other region, j, yielding λ̂i = λi − δ and



λ̂j = λj + δ. See Fig. 1(b).
Given the original arrival rates λ, and the flow rates re-

sulting from migration λ̂, the expected in system delay is1:

k∑
i=1

λ̂i
Λ
· Tµ,ci,λ̂i +

k∑
i=1

t

2
· |λ̂i − λi|. (2)

Attacking The System. An attacker might disrupt or crash
the system resources using, for example, malicious worms
or by physical destruction. In our model this will result in
reducing the capacities (ci values) of the queues.

Let xi be the attack volume in region i. The resulted
capacity in region i as a result of the attack is: ci− xi. The
attack vector (or simply, the attack) is X = (x1, . . . , xk),
where |X| ≤ x is the attack size constraint (constrained by
the attacker’s resources). The expected system delay, as a
result of the attack X is:

T (X) =

k∑
i=1

λi
Λ
· Tµ,ci−xi,λi =

k∑
i=1

[
λi
Λ
· 1

µ · (ci − xi)− λi

]
.

(3)
Throughout this work we assume that the size of the attack
maintains that the arrival rate at any queue will not exceed
the service rate (λ ≤ µ · c). This is based on assuming that
the attacker is rational and since λ = µ · c yields already
infinite delay, λ > µ · c will waist the attacker’s resources.

3. STATIC SYSTEMS
We consider static systems whereby the system cannot

react to the attack by re-routing requests. We show that
the optimal attack is concentrated. Namely, the attacker
will pick some regions and attack them entirely, up to the
constraint of λi ≤ µ · (ci − xi).

The attacker aims to maximize the expected system delay,
by controlling X. I.e., its objective function is: max‖X‖≤x T (X)

(Eq. (3)). Denote by fi(xi) := λi
Λ
· Tµ,ci−xi,λi . Note that

the second derivative of fi with respect to xi is

∂2fi
∂x2

i

= − 2 · λi · µ2

Λ · (λi − µ · (ci − xi))3
(4)

which is negative for any xi such that λi < µ · (ci − xi).
Therefore, the delay in each region is concave (and mono-
tonically increasing) in the attack volume, xi. That is, the
marginal benefit (to the attacker) increases with the attack
size xi. Thus, if the attacker chooses to attack at some vol-
ume xi in some region i, it is optimal to continue investing
attacking efforts in that region (i.e., increasing xi up to the
limit of λi ≤ µ · (ci − xi)) 2.

4. DYNAMIC SYSTEMS
We analyze dynamic systems whereby the system may

reduce the attack damage by migrating requests, and study
the effect of the transition delay on the optimal attack policy.
Denote by T (X, λ̂) the expected system delay as a result of

1Note that we assume that we do not migrate twice (i.e.,
migrations from i to j and then from j to i are not allowed).
2A full proof of the optimality of concentrating efforts on
a small number of regions, where the objective function is
a sum of concave functions, can be found in [5], along with
algorithms to derive such an optimal attack.

the attack X and the requests migration λ̂:

T (X, λ̂) :=

k∑
i=1

λ̂i
Λ
· Tµ,ci−xi,λ̂i +

k∑
i=1

t

2
· |λ̂i − λi| (5)

The objective of the attacker is to find an attack which will
maximize the expected delay, under the assumption that the
system will defend optimally: max‖X‖≤x minλ̂ T (X, λ̂).

We first provide precise analysis of two extreme special
cases: (i) where the transition cost is infinity, and (ii) where
it is 0. We then address general t values and propose an
algorithm which derives the optimal traffic (requests) mi-
gration given an attack, and use it to numerically evaluate
the system performance under various attack strategies.

4.1 Special Case: t =∞
As t is extremely high (t = ∞), the system would never

prefer to migrate requests since the transition delay makes it
not worthy. Thus, the system is practically perfectly static
and the optimal attack policy coincides with that of Sec. 3.

4.2 Special Case: t = 0

We now move to analyze the opposite case, where the
network is perfectly dynamic (i.e., t = 0), that is, traffic
can be transferred from one region to another at no cost.
We show that in contrast to the static case, in this case the
optimal attack tends to be scattered over many regions.

Note that while the network is perfectly dynamic, the mi-
gration has to maintain the constraint that

∑
λ̂ =

∑
λ = Λ.

Thus, we derive the optimal λ̂ for a given system parameters
(µ, c, λ) and attack X using the method of Lagrange multi-

pliers. The Lagrangian is: G = T (X, λ̂)+β ·
[∑k

i=1 λ̂i − Λ
]
.

We are interested in solving ∂G

∂λ̂i
= 0 for i = 1, . . . k. Dif-

ferentiation yields 0 = µ·(ci−xi)
Λ·(µ·(ci−xi)−λ̂i)2

+ β, or

λ̂i = µ · (ci − xi)±

√
−µ · (ci − xi)

Λ · β . (6)

Note that since we require that λi < µ · (ci − xi), the ±
has to be −. By summing over the last equation we have:∑k
i=1 λ̂i =

∑k
i=1 µ · (ci − xi) −

1√
β

∑k
i=1

√
µ · (ci − xi)/Λ.

The left-hand side just equals to Λ; thus

1√
β

=

∑k
i=1 µ · (ci − xi)− Λ∑k
i=1

√
µ · (ci − xi)/Λ

(7)

Substituting Eq. (7) in Eq. (6) yields: λ̂i = µ · (ci −

xi)−
√

µ·(ci−xi)
Λ

(∑k
i=1 µ·(ci−xi)−Λ∑k
i=1

√
µ·(ci−xi)

Λ

)
. Substitution of λ̂i into

the delay formula followed by some algebraic manipulation
yields:

min
λ̂
T (X, λ̂) =

1

Λ
·


(∑k

i=1

√
µ · (ci − xi)

)2

∑k
i=1 µ · (ci − xi)− Λ

− k

 . (8)

To derive the attacker strategy we must maximize Eq. (8)
over all valid |X| ≤ x. To this end, note that Eq. (8) is
monotone increasing in any xi. Thus the attacker will oper-
ate on the constraint (namely |X| = x). Since the denomi-
nator is constant over all such attacks, the decisive expres-
sion is (

∑k
i=1

√
µ · (ci − xi))2 from the numerator. That is,



∑k
i=1

√
ci − xi needs to be maximized under the constraints∑

xi = x, and 0 ≤ xi ≤ ci. The optimal solution strives to
equate ci − xi across all regions. It is achieved by finding
the maximal 0 ≤ n ≤ k for which the n highest capacity
queues hold xi = ci− (

∑
highest ci−x)/n ≥ 0. As a special case,

on a symmetric system we obtain xi = xj for all i, j. Hence,
the optimal attack policy might (and tends to) be scattered
over many regions, as opposed concentrated.

4.3 Algorithmic Approach for 0 < t <∞
Recall that the objective function of the attacker is a max-

min problem (with constraints). Theoretically, it can be
solved numerically using optimization programs, but at a
potentially high computation cost, as each outer max so-
lution (attack X) requires an evaluation of the inner min

problem (λ̂ values). We propose an algorithm which solves

the inner min problem (i.e., derives the optimal λ̂). It can
be used to speed up the overall problem solution process.

We derive the optimal λ̂ in a greedy manner while mi-
grating the requests step-by-step. The algorithm proceeds
as follows: It begins with the original flow of the network
(the λ values), and performs ”discrete” steps of size δ.3 At
each step, it calculates the values of the marginal revenue
(loss) from migrating δ from (to) region i:

∆−j (λ̂j , δ) = Tµ,ci,λ̂i − Tµ,ci,λ̂i−δ, (9)

∆+
j (λ̂j , δ) = Tµ,ci,λ̂i+δ − Tµ,ci,λ̂i . (10)

Using the ∆ values, the migration with the maximal value
is picked, and so on iteratively. The algorithm stops when
the next migration step is not worthy (due to the transition
delay). See the pseudo code described in Algorithm 1.

Algorithm 1 Pseudo-code of Optimal Requests Migration

Set (λ̂1, . . . , λ̂k)← (λ1, . . . , λk).
while True do

Let j s.t. ∆−j (λ̂j , δ) = maxi ∆−i (λ̂i, δ).

Let k s.t. ∆−k (λ̂k, δ) = mini ∆+
i (λ̂i, δ).

if ∆−j (λ̂j , δ)−∆+
k (λ̂k, δ) > t then

λ̂j = λ̂j − δ and λ̂k = λ̂k + δ.
else

Return λ̂ = (λ̂1, . . . , λ̂k).

The optimality of the algorithm results from two proper-
ties of the expected delay in the system: (i) It is a separable
function, as it is the sum of the λ̂i/∆ · Tµ,ci,λ̂i expressions;

(ii) λ̂i/Λ · Tµ,ci,λ̂i is convex in λ̂i (as its second derivative

is positive for any λ̂i < µ · ci). Thus, ∆−j is monotoni-

cally decreasing in λ̂i and ∆+
j is monotonically increasing

in λ̂i. Hence, the migrations chosen by the algorithm are
non-regrettable as the marginal benefit from each migration
throughout the process is monotonically non-increasing.

The running time of the algorithm is bounded by O(k +
1
δ
· Λ) (maximal number of migrations of size δ).
We use Algorithm 1 to numerically demonstrate the effect

of various attack strategies on the expected system delay,
depending on the value of the transition delay, t. Figure 2
plots the expected system delay on a 2-regions symmetric
system as a function of the attack vector, and as a function

3As δ decreases, the accuracy of the algorithm increases.

of t. For example, at t = 0.02, the optimal attack vector is
(0.7·x, 0.3·x) (or (0.3·x, 0.7·x), as the system is symmetric).

As can be seen, the concentrated attack (blue) is supe-
rior at high values of t, and the superiority, comparing to
the other attacks, increases in t. On the other hand, the
balanced attack (yellow) is superior at low values of t and
the superiority decreases in t. This is consistent with our
results from Sec. 4.1 and 4.2, which derived the optimal
attack strategies for the special cases of t = 0, where the
optimal strategy was to scatter the attack, and of t = ∞
where the optimal strategy was to concentrate the attack.

Figure 2: The system delay, as a function of the at-
tack vector and t, on a 2-regions symmetric system.

5. CONCLUSIONS AND FURTHER WORK
We used a model which captures some fundamental prop-

erties of real-world queueing networks, and analyzed and
evaluated optimal attack policies for static and dynamic sys-
tems. Our results reveal that optimal attack nature may
range from full concentration to full scattering, depending
on the ability to re-route traffic, and on the transition cost.

In an ongoing work we extend the model and account for
(i) requests rejection combined with queueing delay, and in-
spect whether this affects the optimal attack policies; (ii) at-
tacks which target the system with a load of ”fake-requests”
(i.e., artificially increase λi values); We work on developing
an algorithm to derive an optimal attack for any t, towards
analyzing arbitrary flow networks as were described in [2].
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