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ABSTRACT

We study a system with heterogeneous parallel servers. Upon
arrival, a job is routed to the queue of one of the servers. We
establish the diffusion limit for the round-robin (RR) policy,
and show that with properly chosen parameters, it achieves
the optimal performance asymptotically over all blind rout-
ing policies. Analysis of the diffusion limit yields a number
of insights into the performance of the optimal RR policies.

1. INTRODUCTION

Consider a queueing system with heterogeneous parallel
servers, each with an infinite waiting room. One stream of
jobs arrives at the system following a renewal process, and
each job upon its arrival is routed immediately to one of
the servers. At each server, the jobs are served according
to the first-in first-out discipline, and their service times are
independent and identically distributed.

This study aims to answer the question: what would be
the optimal routing policy when the routing controller can-
not observe any state information of the system? However, it
is very difficult to answer this question through exact analy-
sis, and to overcome this difficulty we apply the heavy-traffic
analysis in the spirit of the BIGSTEP method (cf. [5]).

_To do so, we first formulate the diffusion limit model
Q(t) that approximate the (original, discrete) routing con-
trol problem. Then, we identify the best possible limit that
uses no state information in routing. It turns out that we in-
terpret a blind routing policy, which is indeed a generalized
round-robin (RR) policy, from the “best” limit. Next, we
justify the interpretation by establishing the diffusion limit
theorem (Theorem 1). That is, under the RR policy, the se-
quence of diffusion-scaled systems does converge to the limit
we identify. Finally, the stationary performance of the limit,
Q(00), is taken as an approximation of the stationary perfor-
mance of the (original, discrete) system of interest, Q™ (c0),
which yields an approximation of the performance objective,
i.e., the expected stationary queue length, immediately.

Furthermore, examining the performance of the diffusion
limit under the RR policy reveals interesting insights. For
example, the optimal RR policy can attain the performance
of the JSQ policy (the globally optimal policy under heavy
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traffic) if and only if all service times are deterministic. But,
on the other hand, it could perform arbitrarily worse than
the JSQ policy, say, when there are many servers in the sys-
tem. Most surprisingly, the proportional RR policy, a con-
ventional option of the RR policy, can be arbitrarily worse
than the optimal RR policy.

Many studies in the literature use the round-robin routing
policy or its variations for the parallel server system when
the controller cannot observe any state information. In the
case of identical servers, the conventional RR routing policy
is widely used, which in its simplest form assigns the incom-
ing jobs to each server equally in a rotating fashion. It is
shown that it minimizes the long-run average total queue
length in the system over all blind routing policies ([4, 1]).
Refer to, e.g., [6, 7] for more related studies. Here, we extend
the research to the case of heterogeneous servers. (Technical
details omitted here can be found in [8], in which optimal
routing policies are also established when various kinds of
state information such as the job arrival history are available
for making routing decision.)

2. MODEL AND PRELIMINARY

We consider a queueing system with K (> 2) servers, in-
dexed by k € K = {1,---, K}, described in the previous
section. Let E(t) be the (exogenous) renewal arrival pro-
cess, which denotes the number of arrivals during the time
interval [0, ¢]. Assume the interarrival times have mean 1/X
and coefficient of variation c,. Let S(t) = (Sk(t))rex be the
renewal service process, where Si(t) denotes the number of
class-k service completions (job departures) after server k is
busy for a total of ¢ time units. Assume the service times
have mean 1/uy and coefficient of variation cp .

To describe the routing of jobs, we define the routing pro-
cess as D(0) = (Pr(€))rex, £ =0,1,2,---, where @y (¥) is the
number of jobs among the the first ¢ arrivals that are dis-
patched to the server k. The total number of jobs routed to
servers must be equal to the total arrivals: }7, . ®x(£) = £.

The (generalized) RR policy is specified with the weight-
parameter p = (p1,--- ,px) satisfying >, - pr = 1. By the
policy, a fraction py of jobs is sent to the server k according
to a pre-specified splitting sequence. That is, the sequence of
arrivals should be split so that the number of jobs dispatched
to each server k is “close” to its quota, a fraction py of the
total arrival, at any time instance. More specifically, the RR
policy should satisfy the following requirement: for some
constant k,

Br(0) —prl] <k, €=1,2,---, kek. (1)



A detailed implementation can be found in [8].

The objective of the routing control is to minimize the
performance objective, expected stationary (total) queue
length, i.e., EQx(00) (= ED, o Qr(00)), where Q. (o) rep-
resents the stationary queue length of server k, if exists.

Let Q(t) = (Qk(t))rex be the queue length process, where
Qk(t) denotes the number of jobs in queue k at time ¢. The
number of arrivals routed to server k during [0, ¢], is given
as 5 (E(t)), and satisfies the requirement:

S @u(B() = B(1). (2)

ke

Let B(t) = (Bk(t))kex, where Bg(t) denotes the busy time,
i.e., total amount of the time that server k has served jobs
during [0,¢]. The number of service completions at server k
up to time ¢ is given as Si(Bx(t)). Then, the dynamics of
the queueing system is characterized by

Qr(t) = Qr(0) + x(E(t)) — Sk(Bk(t)) 20, (3)

t
By(t) = / w0y ds. (4)

The first equation is a balanced equation, and the second
specifies a work-conserving condition. Define the idling pro-
cesses Y (t) = (Yi(t))rex as follows,

Vilt) = st = () = e [ Viauompds. 6)

It is immediately observed from the above expressions:

/ Qu(3)dYi(s)ds = 0. (6)
% (t) is non-decreasing in ¢ > 0, and Yy (0) = 0. (7)

To carry out the heavy traffic analysis, we introduce a se-
quence of systems, indexed by n that represents a sequence
of numbers increasing to +o00. Each system is like the one
introduced above, but may differ in their arrival rates. For
example, for the n-th system, the arrival process, the ar-
rival rate and the server-k service rate are denoted as E" (t),
A" and pp, respectively. The processes satisfying the rela-
tionships in equations (2-7) are appended with the index n
properly, too.

Assume the sequence of systems are linked via the limit:

A" —= XNi=ux and c; — cq, asm — 0o,
and furthermore the heavy traffic condition is satisfied:
n(A" — ux) = 0 <0, asn — oo. (8)

From now on, the parameter \ denotes the limit of A" rather
than the arrival rate of a particular system. Moreover, the
above condition implies that the (nominal) traffic intensity
approaches one, p" = A" /ux — 1, as n — oo.

Define the diffusion scaling (along with centering) for the
primitive processes:

(E™(t), Sk (t) =

By the functional central limit theorem for the renewal pro-
cess (e.g., [2]), we have the following weak convergence,

% (E™(n?t) — A"n’t, Si (n*t) — prn®t) .

(E™(t),8™(t)) = (E(t),5(t), asn — oo,

where E(t) is a Brownian motion with zero mean and vari-
ance Ac2; and S(t) = (S(t))rex is a K-dimensional Brow-
nian motion with independent coordinates, whose kth co-
ordinate, Sy(t), is a Brownian motion with zero mean and
variance picj . E(t) and S(t) are independent.

For the routing process, denote formally:

BL(1) = = (BR(1n’t]) - piLn’t]) .

Now, a routing policy for the sequence of systems actually
refers to a sequence of policies, with the n-th policy associ-
ated with the n-th system.

For the other derived processes, we write:

(@R, 72 ®) = = (QE*0), ¥ (%))
Rewrite equation (3) for the n-th system as:
Q) = Qr(0)+ Xy (t) +Yi' (1), 9)
X (t) [k (E™ (1)) — p E" (1)] + pk [E" (1) — A"1]
—[Sk (B (t)) — px Bi (0)] + (pr A" — ) £(10)

Then, the dynamics given in equations (2-7) can be written
as a Skorohod problem (e.g., [2]): for all k € K and ¢ > 0,

Qi (t) = Q(0) + Xi () + Yi'(t) > 0, (11)
QZ(s)d)}k"(s)ds =0, (12)

0
Y (t) is non-decreasing in t > 0, and Y;"(0) = 0(13)
Xi(t) = R(E™ (1) + pk E" (1) — SE(Bi (1)) + 6it,

where 03 = n(pg A" — ) and 37, dR(t) = 0.
For the parameters " = (0} )rex just introduced, assume
that for some constants @ = (0x)reic < 0, the following holds

0p — 0, asn — oo. (14)

The weight pj; can also be interpreted as the (approximate)
routing rate to server k in the n-th system. Then, the (ap-
proximate) arrival rate to and traffic intensity of server k
are then denoted as pp A" and pj := pp A"/, respectively.
Hence, the above condition requires that the arrival rates to
the queues pp A" are within the service capacities (rates) g
and approach the capacities proportionally. This condition
also implies

;> Ok =0k (15)

kel

Pk = Pk =

Unlike the parameter 0x, which is given in (8) and is fixed,
we have some room to adjust the parameters 0;’s when we
try to find the optimal routing policy below.

3. OPTIMAL ROUND-ROBIN ROUTING

By observing the Skorohod representation of the systems
n (11-13), we ezpect the weak convergence, Q" (t) = Q(t),
where the limit (i.e., the diffusion limit) is the unique solu-
tion of the following Skorohod problem:

Qi (t) = Qr(0) + Xu(t) + Yi(t) > 0, (16)
Y (t) is non-decreasing in ¢ with Y(0) =0, (17)

Vit
/ T Ok dVH(t) = 0, (18)



with X(t) = (Xk(t))kejc, Xk(t) = q)k()\t) +pkE(t) — Sk(t) 4+
0rt. Given that the routing process is independent of the
arrival and service processes, the expected stationary queue
length in the limit can be evaluated as (cf. [2]:

EQk(c0) = Var(’@k()\)Jr_p;i(l)fSk(l))

Var(®i(X)) + pire2 + pich i
20, '

By letting Var(®x(\) = 0 and optimizing over {f)}, we
can derive a lower bound of expected stationary total queue
length and the associated parameter,

2
. (Zh \fr2ac +uncd,)
< , with (19)

EQx(o0) —20xc

\/PRACE + Bkt
0" = (0% )rex, Ok = Ox. (20)

> PIACE + pich

Indeed, the following theorem shows that the round-robin
routing policy, denoted as RR(f), can achieve this lower
bound with 6 = 0* (cf. [8] for a proof).

THEOREM 1. (a) Under the RR policy RR(0) (and along
with some regular conditions), the weak convergence described
in (16-18) holds with ®x(t) = 0. The “free process” Xy (t)
is a Brownian motion with drift 0) and variance (piica +
,ukclz,’k). The expected stationary queue lengths is:

2y .2 2
R A2
EQx(o0: RR(0)) = PEACa T HRChk e i (1)
—20y,
(b) Let 0 be set to 0* = (0;)rex given in (19), or alterna-
tively, choose “routing rates” {py} such that

e — PR A" _ \/(pz)Q)‘"(CQ)Q + Nkcg,k
D o \/(;I)}l)z)\”(df)2 + picy ;

Then, the RR policy RR* = RR(0%) is asymptotically opti-
mal: EQk(00; RR*) < EQx(o0; H) for any blind policy H.
Moreover, the expected stationary queue length is given as,

2
R (Zk Vpi)\cﬁ + Nkcg,k)
EQx(oco; RRY) = .

—20x

(22)

(23)

Note that in part (b), (ux — A"pr) and (ux — A™) are the
surplus capacities of the server k and the whole system, re-
spectively; and ((pi)*A™ (i) 4 prcp 1) is the combined vari-
ability owing to the arrival and service processes of the class
k. Hence, under the optimal RR policy, the overall surplus
capacity is distributed to each server in proportional to the
square root of its combined variability. This is reminiscent
of the square-root rule in various queueing models.

Below, we summarize key observations about the perfor-
mance of the optimal RR policy RR* (cf. [8] for details).

Comparison between the optimal RR policy and the JSQ
policy. First, from the optimality of the JSQ policy (e.g.,
[3]), we know that the expected stationary queue length un-
der the optimal RR policy RR* cannot be smaller than the
JSQ policy. On the other hand, by comparing their per-
formances (cf. [3] for the performance under JSQ), both

policies attain the same expected queue length when
cik =0forall k € K,

and the parameters 0} and p;. specified in Theorem 1 can
be simplified as:
0% = pro, pp = 1E.
1229
In other words, the optimal RR policy can attain the per-
formance of the JSQ policy (and thus achieve the optimal
performance over all non-anticipating policies) if and only if
all service times are deterministic, and in this case, jobs are
routed to each server in proportion to the service rate.
Next, we consider an example, in which all servers are
identical, services times are exponentials, and arrivals fol-
low the Poisson process. The expected queue lengths are
reduced to

Edx (o0 (1+ K)X A

Hence, when the number of servers K grows, the perfor-
mance under the optimal RR policy can be arbitrarily worse
than the JSQ policy.

Comparison between the optimal RR policy and the pro-
portional RR policy. For the RR policy RR(), a conven-
tional option is to distribute jobs to servers in proportion to
the service rates, i.e., to set the parameters as p; = ur /i,
and thus from the condition in (14), 0, = 0}, := (u/ux)0x.
We call it the proportional RR policy, and its expected sta-
tionary queue length can be derived from Theorem 1.

First, the proportional RR policy is generally subopti-
mal within the class of RR policies. Second, we exam-
ine an example in which we assume Poisson arrival and
exponential service and pick p1 = 1 — 1/K + 1/K? and
pr = 1/K?for k =2,--- , K. We show that the performance
ratio (EQx (co; RR(0'))/EQx(00; RR(6*))) can be arbitrar-
ily large as K increases. That is, the proportional RR policy
can perform arbitrarily worse than the optimal RR policy.
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