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ABSTRACT

Recently it was shown that the response time of First-Come-
First-Served (FCFS) scheduling can be stochastically and
asymptotically improved upon by the Nudge scheduling al-
gorithm in case of light-tailed job size distributions. Such
improvements are feasible even when the jobs are partitioned
into two types and the scheduler only has information about
the type of incoming jobs (but not their size).

In this paper we introduce Nudge-M scheduling, where
basically any incoming type-1 job is allowed to pass any
type-2 job that is still waiting in the queue given that it
arrived as one of the last M jobs. We prove that Nudge-
M has an asymptotically optimal response time within a
large family of Nudge scheduling algorithms when job sizes
are light-tailed. Simple explicit results for the the prefactor
of Nudge-M are derived as well as explicit results for the
optimal parameter M. An expression for the prefactor that
only depends on the type-1 and type-2 mean job sizes and
the fraction of type-1 jobs is presented in the heavy traffic
setting.

1. INTRODUCTION

First-Come-First-Served (FCFS) scheduling, where jobs
are served in their order of arrival, is generally considered
to be fair and is in fact known to be weakly tail optimal
for class-I job size distributions [2|. A class-I job size distri-
bution X is a light-tailed distribution for which some mild
technical conditions hold such that the response time in an
M/G/1 queue, where X represents the service time, has ex-
ponential decay [1]. These distributions include all phase-
type distributions [5] as well as any distribution with finite
support. Recall that a distribution is light-tailed if there
exists an ¢ > 0 such that E[e”“X] is finite. Thus for any
class-1 job size distribution X, we have

P[Rpcrs > t] ~ CFCFseiezt,

where Rpcrs is the job response time in an M/G/1 queue
with job size distribution X under the FCFS scheduling dis-
cipline [1, Section 5]. The fact that FCFS is weakly tail
optimal means that FCFS has the highest possible decay
rate 0z of all scheduling disciplines.

In a recent paper |4] it was shown that the prefactor crcrs
is however not minimal among all scheduling algorithms
(meaning FCFS is not strongly tail optimal) and a lower
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prefactor can be achieved by the so-called Nudge scheduling
algorithm. The Nudge algorithm in [4] was such that the
scheduler needs to known whether the size of an incoming
job exceeds certain thresholds. It was subsequently shown
in [6] that similar results can be obtained in a much more
relaxed setting where jobs are partitioned into two types
and the scheduler only needs to know the type of incoming
jobs. This was done by introducing the Nudge-K schedul-
ing algorithm. Nudge-K operates as follows: when a type-1
job arrives at time ¢ and the previous k < K arrivals were
type-2, then the incoming type-1 job is served before any
of these k type-2 jobs that are still waiting in the queue at
time t. Note that under Nudge-K a type-1 job can pass up
to K type-2 jobs, but a type-2 job can be passed at most
once.

Let Rnudge—rk be the response time in an M/G/1 queue
using the Nudge-K scheduling algorithm. It was shown in
|6] that

P[RNudge—k > t] ~ cxe 7t
for some prefactor cx and this prefactor is minimized over
K > 0 by setting K = max(0, Kopt) with
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where S(s) is the Laplace transform of a random job and
Si(s) of a type-i job, for i = 1,2. When Kop; < 0, then
crcrs < ck for any K > 0, while otherwise crcrs > ck
for K = Kopt.

The objective of this paper, which is a short version of [3],
is to answer the following question:

Given that jobs are partitioned in two types, which
Nudge-like scheduling algorithm that only uses job types
and their arrival order minimizes the prefactor?

Our answer is the Nudge-M scheduling algorithm. When
a type-1 job arrives at time ¢ under Nudge-M, it passes any
type-2 job still waiting in the queue provided that this type-
2 job was among the last M arrivals (before time t). We
first derive a simple expression for the prefactor cys of the
Nudge-M scheduling algorithm and rather surprisingly show
that minimizing cas is done by setting M = max(0, Mopt)
with M,pe = Kopt given by .

More importantly, we introduce a large family F of Nudge-
like scheduling algorithms (see Section and show that
Nudge-M with M = M,,: minimizes the prefactor among all



the scheduling algorithms in this family F, meaning Nudge-
M with M = M,y is strongly tail optimal within F.

The Nudge-M scheduling algorithm only uses the type of
arriving jobs and the order in which they arrive. One may
wonder to what extent the prefactor can be further reduced
if more information is used, such as the exact arrival times.
In a closely related paper [7] that was written concurrently
to this paper, the authors introduce the v-Boost schedul-
ing algorithm. This algorithm minimizes the prefactor for
class-1 job size distributions in an M/G/1 queue among all
scheduling policies in case the job size s of each individual
job as well as the arrival time of each job is known. More-
over the authors also propose a v-Boost algorithm in case
the jobs are partitioned into several types and the scheduler
only has information about the job types and arrival time,
but not the individual sizes. In this setting the boost of
a job depends on its type only. The authors of [7] prove
that y-Boost achieves a lower prefactor than the Nudge-M
algorithm by exploiting the additional arrival time informa-
tion. In this paper we prove that the prefactor of y-Boost
and Nudge-M coincide in the heavy traffic limit. This in-
dicates that the gain offered by the additional arrival time
information vanishes as the load tends to one.

This short paper is structured as follows. Section[2]presents
the model as well as the family of scheduling algorithms un-
der consideration, while Section |§| lists the main results.

2. MODEL AND ALGORITHMS

We consider a queuing system with two types of jobs.
Arriving jobs are either type-1 with probability p or type-
2 with probability 1 — p, and consecutive types are inde-
pendent. Jobs arrive following a Poisson process with pa-
rameter X\. Let F[X;] be the mean job size of a type-i
job, for i = 1,2. Without loss of generality, assume that
pE[X1] + (1 — p)E[X2] = 1 so that the load of the system
is A. We demand that the job size distribution is a class-I
distribution.

We consider the following family Fas of Nudge scheduling
algorithms. Let ¢ be the function that counts in number of
twos in a string of any length consisting of ones and twos,
e.g., t(12122) = 3. A Nudge scheduling algorithm belong-
ing to Fas is characterized by a function n from {1,2} to
{0,..., M} that obeys the following two conditions:

(C1) n(s) <t(s),
(C2) n(sos1...sm-1) <n(s)+ 1(so =2)

for all s = s1...s0 € {1,2}™, where 1(A) = 1 if A is true
and 1(A) = 0 otherwise. The interpretation of this function
is as follows. Whenever a type-1 job arrives it looks at the
types of the last M arrivals. Assume these M types are
characterized by the string s, then the type-1 job passes the
n(s) most recent type-2 arrivals if they are still waiting in
the queue. For instance, if n(s) = 3, but there are only two
type-2 jobs waiting in the queue, then the type-1 job passes
only these two type-2 jobs. Note that the condition (C2)
on n(s) guarantees that if a type-1 job may pass a type-2
job, all intermediate arrivals of type-1 may also pass this
type-2 job. We clearly have that Far C Far+1, for any M,
as for any n(s) in Fur, we can define n'(s) in Fa41 such
that n'(s1...s0m1) =n'(s1...5m2) =n(s1...5Mm).

The family F is defined as F = |J,;;~, Fm and contains
a large variety of scheduling policies, such as Nudge-K and

Nudge-M, that use the last M job arrival types for some
M to make scheduling decisions (see [3] for more examples).
More specifically, for Nudge-M the function n(s) is such
that n(s) = t(s) as all type-2 jobs among the last M may be
passed. For Nudge-K [6] we set M = K and n(s) equal to
the number of leading twos in s before encountering a one,
as a type-2 job can be passed at most once.

3. RESULTS

The first result gives a simple expression for the ratio be-
tween the prefactor cys of Nudge-M and the prefactor crors
of FCFS.

Theorem 1. For Nudge-M we have

CmMm

= (w1 + (1 —w1)S(=02)") (w1 + )™, (2)
CFCFS

with w1 = pS1(—02)/S(—0z) and w = (1 — p)/S(=6z).

Further, cy/crers s conver in M and achieves a unique

minimum in Mop: = Kopt defined by .

PROOF. (Sketch) We limit ourselves to the expression for
cu. As we are analyzing the asymptotic behaviour, one
can show that we may assume that an arriving type-1 job
sees a queue with at least M jobs still waiting, and that a
type-2 job is waiting long enough that the next M arrivals
happen before it goes into service. Let ¢y, (i) be the prefactor
of the type-i waiting time. For a tagged type-1 job, we
look at the workload without the last M jobs, which has
prefactor c¢z/S(—0z)™. The waiting time consists of this
work plus the workload associated with the type-1 jobs in
the last M arrivals as these are not passed. With probability
(M) (1 —p)*p™ =% we need to add the work of M — k type-1

k
jobs, which yields (using the final value theorem)

cz M M—k& M—
W;}(k)(l_p)kp Sy (—0z)M "
_ o N (MY (a=p)\ (pSi=02)\""
- ZZ(J« <§(792)> <§(*9z) )
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As for a tagged type-2 job, with probability (]ZI) (1—p)M=Fpk
there are k type-1 jobs among the next M arrivals and these
k jobs pass the tagged job. The waiting time of the type-
2 job therefore equals the FCFS workload plus the work
associated with k type-1 jobs. Hence, by the final value

theorem we find

e (M) =

M
Cyy(2) (M) = cz Z
k=0
w1

Finally, cpr = pCW(1)§1(—92) + (1 - p)cw(z)gg(—ez) and

CFCFS ICZs(—Qz). D

The next theorem establishes the optimality result for
Nudge-M in F.

Theorem 2. The Nudge-M scheduling algorithm with M =
Mopt > 0 has the smallest prefactor in F. Further, Nudge-
M minimizes the prefactor in Far for M < Mopt.
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Figure 1: The prefactor ratio of Nudge-K, Nudge-M, and y-Boost (with optimized K, M, and boost) compared to FCFS with
exponential job sizes. Nudge-M significantly outperforms Nudge-K for higher loads, while v-Boost outperforms the different

Nudge algorithms by exploiting the arrival time information.

PROOF. (Sketch) The proof proceeds in three steps. First
a general expression for the prefactor ¢, of any scheduling
algorithm 7 € F is derived. This rather involved expression
is subsequently used to show that for any # € F and s €
{1,2}M if we increase n(s) by one such that the conditions
(C1) and (C2) on the function n remain valid, then this leads
to a reduction in the prefactor if and only if the position of
the n(s) + 1-st two in s is in the first M,p: positions. This
result suffices to see that Nudge-M is optimal in Fas for
M < Mop: as n(s) = t(s) for any s under Nudge-M. To
prove optimality of Nudge-M with M = M,y in F one
shows that a sequence of operations can be found, where
an operation increases or decreases n(s) by one for some s,
that gradually transforms any policy # € F to Nudge-M
such that the prefactor reduces during each operation. [

Theorem 3. For Nudge-M with E[X2] > E[X1], we have
3)

. cMm
lim

A—1— CFCFS

_ E[Xl}_pE[Xl]E[XQ]_(l_p)E[XQ]

where

(4)

Mopt & {log(E[Xz]/E[Xl])E[XﬂJ

2(1 =)
for X close to one.

This result shows that the heavy traffic limit of cas /crers
is insensitive to the shape of the job size distributions X1, X»
and X. We further note that the optimal M for the heavy
traffic regime given by is expressed in terms of A, E[X],
E[X5] and E[X?] only and may therefore be easier to esti-
mate in practice than .

Corollary 1. Let ¢, denote the prefactor of ~y-Boost [,
then

lim cy = lim ¢y,
A—1— A—1—

with M = M,p: meaning the prefactors of v-Boost and Nudge-
M coincide in the heavy traffic limit.

This result indicates that the additional arrival time infor-
mation does not yield a tail improvement in the heavy traffic
limit. It does however yield an improvement for A < 1 as
illustrated in Figure [[] which compares the prefactor ratio of
three scheduling algorithms with optimized parameters and
exponential job sizes. It shows significant gains for Nudge-M
over Nudge-K when the load is sufficiently high. Note that
Nudge-K and Nudge-M coincide when Myp: < 1. Finally
the v-Boost algorithm outperforms Nudge-M as proven in
|7] by exploiting arrival time information.
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