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ABSTRACT
We study the design of risk-sensitive online algorithms, in
which risk measures are used in the competitive analysis of
randomized online algorithms. We introduce the CVaRδ-
competitive ratio (δ-CR) using the conditional value-at-risk
of an algorithm’s cost, which measures the expectation of the
(1−δ)-fraction of worst outcomes against the offline optimal
cost, and use this measure to study three online optimiza-
tion problems: continuous-time ski rental, discrete-time ski
rental, and one-max search. The structure of the optimal
δ-CR and algorithm varies significantly between problems:
we prove that the optimal δ-CR for continuous-time ski

rental is 2 − 2−Θ( 1
1−δ

), obtained by an algorithm described
by a delay differential equation. In contrast, in discrete-
time ski rental with buying cost B, there is an abrupt phase
transition at δ = 1 − Θ( 1

logB
), after which the classic de-

terministic strategy is optimal. Similarly, one-max search
exhibits a phase transition at δ = 1

2
, after which the classic

deterministic strategy is optimal; we also obtain an algo-
rithm that is asymptotically optimal as δ ↓ 0 that arises as
the solution to a delay differential equation.

1 Introduction
Randomness can improve decision-making performance in
many online problems; for instance, randomization improves
the competitive ratio of online ski rental from 2 to e

e−1
[10]

and of online search from polynomial to logarithmic in the
fluctuation ratio [6]. However, this improved performance
can only be obtained on average over multiple problem in-
stances, as a randomized algorithm can vary wildly in its
performance on any particular run, which may be undesir-
able if an agent is sensitive to risks of a particular size or
likelihood. Fields such as economics and finance have fielded
research on risk aversion and alternative risk measures that
enable modifying decision-making objectives to accommo-
date these risk preferences (e.g., [11, 2]). One of the most
well-studied risk measures in recent years, due to its nice
properties (as a coherent risk measure) and computational
tractability, is the conditional value-at-risk (CVaRδ), which
measures the expectation of a random loss/reward on its
(1 − δ)-fraction of worst outcomes [12]. CVaRδ and other
risk measures have seen wide application across domains and
have been studied as an objective in place of the expectation
in various online learning problems (e.g., [7, 3, 13]).
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Despite the significant extent of literature on risk-sensitive
algorithms for online learning, there has been no work on the
design and analysis of competitive algorithms for online op-
timization problems like ski rental, online search, knapsack,
function chasing, or metrical task systems with risk-sensitive
objectives; the closest related work is a recent paper that
studies ski rental with risk constraints [5]. Thus we ask:
how can we design competitive online algorithms when we
care about the CVaRδ of the cost/reward, and what are the
optimal competitive ratios for different problems?

In this work, we begin to work toward answering this
question, studying risk sensitivity in competitive online al-
gorithms for online optimization. In particular, we focus on
two of the prototypical problems in online optimization: ski
rental, which encapsulates the fundamental “rent vs. buy”
tradeoff inherent in online optimization with switching costs,
and one-max search, which exhibits a complementary “ac-
cept vs. wait” tradeoff fundamental to constrained online
optimization. While these problems are both simple to pose,
they have applications to more complex problems including
TCP acknowledgement and buffering problems [9, 8], and
they reflect crucial components of the difficulty of more com-
plicated online optimization problems. They thus serve as
ideal analytic testbeds for investigating the design of risk-
sensitive algorithms in online optimization.

In this extended abstract, we give an overview of our
main results on risk-sensitive algorithms for continuous- and
discrete-time ski rental and one-max search, discussing al-
gorithms, optimality, and phase transitions exhibited by the
problems. We refer the reader to the full version of the paper
for further details and proofs [4].

2 Preliminaries
In this section, we introduce the conditional value-at-risk
and the three online problems studied in this work.

2.1 The Conditional Value-at-Risk
A risk measure is a mapping from the set of R-valued ran-
dom variables to R that gives a deterministic valuation of
the risk associated with a particular random loss. One of the
most well-studied risk measures in recent years is the condi-
tional value-at-risk (CVaR), defined as the expectation of a
random variable X on its (1−δ)-fraction of worst outcomes.
It is defined formally as follows.

Definition 2.1 (Conditional Value-at-Risk). Let X be
a real-valued random loss variable with inverse CDF F−1

X .



Its conditional value-at-risk CVaRδ[X] is defined as [1]:

CVaRδ[X] =
1

1− δ

∫ 1

δ

F−1
X (p) dp.

This definition, which is one of several ways of expressing
CVaRδ, highlights the intuition that CVaRδ[X] computes
the expected loss of X on the largest (1− δ)-fraction of out-
comes in its distribution. For random rewards, CVaRδ is
defined similarly as the expectation on the smallest, rather
than largest, (1−δ)-fraction of outcomes. Note that CVaR0[X] =
E[X] and CVaR1[X] := limδ↑1 CVaRδ[X] = ess supX.

2.2 Competitive Analysis
In the study of online algorithms, algorithm performance is
typically measured via the competitive ratio, or the worst
case ratio in (expected) cost between an algorithm and the
offline optimal strategy that knows all uncertainty in ad-
vance. In this work, we introduce a modified version of the
competitive ratio for randomized algorithms that goes be-
yond expected performance: instead, we penalize a random-
ized algorithm via the ratio between the conditional value-
at-risk of its cost and the offline optimal algorithm’s cost,
terming this metric the CVaRδ-competitive ratio (δ-CR).

Definition 2.2 (CVaRδ-Competitive Ratio). Consider
an online problem with uncertainty drawn adversarially from
a set of instances I. Let Alg be a randomized algorithm,
and let Opt be the offline optimal algorithm. The CVaRδ-
Competitive Ratio (δ-CR) is defined as the worst-case
ratio between the CVaRδ of Alg’s cost and the offline opti-
mal cost:

δ-CR(Alg) := sup
I∈I

CVaRδ[Alg(I)]

Opt(I)
,

where the CVaRδ is taken over Alg’s randomness.

Note that the δ-CR can be viewed as an interpolation
between the classic randomized case where the adversary has
no power over Alg’s randomness and Alg pays its expected
cost (δ = 0), and the case where the adversary has full
control over Alg’s randomness, so Alg pays the worst cost
in its support and determinism is optimal (δ = 1).

2.3 Online Problems Studied
We now provide brief descriptions of the three problems
studied in this work.
Continuous-Time Ski Rental. In the continuous-time
ski rental (CSR) problem, a player faces a ski season of
unknown and adversarially-chosen duration s ∈ R++, and
must choose how long to rent skis before purchasing them.
In particular, the player pays cost equal to the duration of
renting, and cost 1 (without loss of generality) for purchasing
the skis. Deterministic algorithms for ski rental are wholly
determined by the day x ∈ R++ on which the player stops
renting and purchases the skis: an algorithm that rents until
day x and then purchases pays cost s ·1x>s +(x+1) ·1x≤s.
Randomized algorithms can be described by a random vari-
able X over purchase days, in which case the algorithm pays
(random) cost s ·1X>s+(X+1) ·1X≤s. Given knowledge of
the total number of skiing days s, the offline optimal strat-
egy is to rent for the entire season if s < 1, incurring cost s,
and to buy immediately otherwise, yielding cost 1. Defining

αCSR,µ
δ as the δ-CR of a strategy X ∼ µ, we have

αCSR,µ
δ := sup

s∈R++

CVaRδ[s · 1X>s + (X + 1) · 1X≤s]

min{s, 1} .

We denote by αCSR,∗
δ the smallest δ-CR of any strategy. It is

well known that αCSR,∗
1 = 2, which is achieved by purchasing

skis deterministically at time 1, and αCSR,∗
0 = e

e−1
[10].

Discrete-Time Ski Rental. In the discrete-time ski rental
(DSR) problem, a player faces a ski season of unknown and
adversarially-chosen duration s ∈ N and must choose an in-
teger number of days to rent skis before purchasing them;
renting for a day costs 1, and purchasing skis has an integer
cost B ≥ 2. The cost structure is essentially identical to
the continuous-time case, except the algorithm’s and adver-
sary’s decisions are restricted to lie in N: if a player buys
skis at the start of day x ∈ N and the true season duration
is s ∈ N, their cost will be s ·1x>s+(B+x−1) ·1x≤s. Thus
for a random strategy X ∼ µ with support on N, the δ-CR
is defined as

α
DSR(B),µ
δ := sup

s∈N

CVaRδ[s · 1X>s + (B +X − 1) · 1X≤s]

min{s,B} .

As in the continuous-time setting, we denote by α
DSR(B),∗
δ

the smallest δ-CR of any strategy. It is well known that

α
DSR(B),∗
1 = 2− 1

B
, achieved by deterministically purchasing

skis at the start of day B, and α
DSR(B),∗
0 = 1

1−(1−B−1)B
,

which approaches αCSR,∗
0 = e

e−1
as B → ∞.

One-Max Search. In the one-max search (OMS) problem,
a player faces a sequence of prices vt ∈ [L,U ] arriving online,
with U ≥ L > 0 known upper and lower bounds on the price
sequence; the fluctuation ratio θ = U

L
is defined as the ratio

between these bounds. The player seeks to sell an indivisible
item for the greatest possible price; after observing a price
vt, they can choose to either accept the price and earn profit
vt, or to wait and observe the next price. The duration
T ∈ N of the sequence is a priori unknown to the player; if
T elapses and the player has not yet sold the item, they sell
it for the smallest possible price L in a compulsory trade.
An algorithm that sells the item at the first price ≥ x will
earn profit, in the worst case, L · 1x>v + x · 1x≤v when the
true maximum price in the sequence is v. Thus the δ-CR of
a “random threshold” algorithm that accepts the first price
meeting or exceeding some random value X ∼ µ is defined:

α
OMS(θ),µ
δ := sup

v∈[L,U ]

v

CVaRδ[L · 1X>v +X · 1X≤v]
;

Note that in this definition, we take the ratio between the
offline optimal cost and the CVaRδ of the algorithm’s cost,
since we are maximizing profit rather than minimizing cost.
Similarly, the CVaRδ definition employed here is the reward
form; see our full paper [4] for full details. We denote by

α
OMS(θ),∗
δ the optimal δ-CR for the problem; it is known

that α
OMS(θ),∗
1 =

√
θ and α

OMS(θ),∗
0 = 1 +W0

(
θ−1
e

)
, where

W0 is the principal branch of the Lambert W function [6].

3 Results
In this section, we describe our algorithmic upper bounds
and lower bounds for each of the three problems studied.
Continuous-Time Ski Rental. For the CSR problem,
the optimal algorithm arises as the solution to a delay dif-
ferential equation.



Theorem 3.1. For any δ ∈ [0, 1), let ϕ : [0, 1] → [0, 1] be
the solution to the following delay differential equation:

ϕ′(t) =
1

α(1− δ)
[ϕ(t)− ϕ(t− (1− δ))] for t ∈ [1− δ, 1],

with initial condition ϕ(t) = log
(
1 + t

(α−1)(1−δ)

)
on t ∈

[0, 1 − δ]. Then when α = αCSR,∗
δ , ϕ is the inverse CDF

of the unique optimal strategy for continuous-time ski rental
with the δ-CR metric. Moreover,

αCSR,∗
δ = 2− 2−Θ( 1

1−δ
) as δ ↑ 1.

Proving this result requires the insight that the inverse CDF
is more tractably analyzed than the PDF when considering
the δ-CR, and in addition depends on a set of structural re-
sults characterizing the optimal algorithm’s indifference to
the adversary’s decision.

Discrete-Time Ski Rental. The DSR problem exhibits
a remarkably different structure than the CSR problem: in
particular, there is a phase transition at δ = 1 − Θ( 1

logB
)

marking a transition from a regime where randomness im-
proves performance to one in which determinism is optimal.

Theorem 3.2. Let α
DSR(B),∗
δ be the optimal δ-CR for discrete-

time ski rental with buying cost B ∈ N. Then α
DSR(B),∗
δ ex-

hibits a phase transition at δ = 1−Θ( 1
logB

), whereby before

this transition, α
DSR(B),∗
δ strictly improves on the determin-

istic optimal δ-CR of 2 − 1
B
, whereas after this transition,

α
DSR(B),∗
δ = 2− 1

B
.

Moreover, in the discrete setting, the optimal algorithm
for δ = 0 remains optimal for sufficiently small δ.

Theorem 3.3. Suppose δ = O( 1
B
). Then the optimal δ-CR

α
DSR(B),∗
δ and strategy pB,δ,∗ for discrete-time ski rental

with buying cost B are

αB,∗
δ =

C − δ

1− δ
and pB,δ,∗

i =
C

B

(
1− 1

B

)B−i

for all i ∈ [B], where C = 1
1−(1−1/B)B

is the optimal com-

petitive ratio for the δ = 0 case. In particular, pB,δ,∗ is
identical to the optimal algorithm for the δ = 0 setting.

One-Max Search Finally, we show that OMS admits an
algorithm that arises as the solution to a delay differential
equation, just like CSR. Like DSR, though, OMS also ex-
hibits a phase transition at δ = 1

2
, after which randomness

does not help and determinism is optimal.

Theorem 3.4. Let δ ∈ [0, 1], and let ϕ : [0, 1] → [L,U ] be
the solution to the following delay differential equation:

ϕ′(t) =
α

1− δ
[ϕ(t− δ)− L] for t ∈ [δ, 1],

with initial condition ϕ(t) = αL on t ∈ [0, δ], where α is

chosen such that ϕ(1) = U when δ < 1, and α :=
√
θ when

δ = 1. Then ϕ is the inverse CDF of a random threshold
algorithm for one-max search with δ-CR α. In particular, α
is upper bounded as:

α ≤

{
1 +W0

(
θ−1
e

)
+O(δ) as δ ↓ 0√

θ when δ > 1
5
.

Moreover, there is an identical lower bound of α
OMS(θ),∗
δ ≥√

θ = α
OMS(θ),∗
1 when δ ≥ 1

2
and an asymptotically identical

lower bound of α
OMS(θ),∗
δ = 1 +W0

(
θ−1
e

)
+Ω(δ) as δ ↓ 0.
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