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ABSTRACT
This paper studies the continuous-time join-the-shortest-
queue (JSQ) system with general interarrival and service
distributions. Under a much weaker assumption than the
one in the literature, we prove that each station’s scaled
steady-state queue length weakly converges to an identical
exponential random variable in heavy traffic. Specifically,
we establish our results by only assuming 2 + δ0 moment on
the arrival and service distributions for some δ0 > 0. Our
proof exploits the Palm version of the basic adjoint relation-
ship (BAR) approach as a key technique.

1. INTRODUCTION
We consider a continuous-time queueing system with J

parallel service stations, each with a single server and an
infinite waiting queue. Jobs arrive at the system following
a renewal process, and service times for each station are in-
dependent and identically distributed (i.i.d.) with general
distributions. When a job arrives, it is routed to the sta-
tion with the shortest queue length. This policy is known
as the join-the-shortest-queue (JSQ) policy, and the system
employing it is called the JSQ system. The JSQ policy is to
equalize the queue lengths across stations, thereby reducing
the average waiting time.

In this paper, we show that the scaled steady-state queue
length for each station weakly converges to the same ex-
ponential random variable in heavy traffic. Specifically, we
consider a sequence of JSQ systems indexed by r ∈ (0, 1).
In heavy traffic with r → 0 with fixed J , we prove that if
interarrival and service times have finite 2 + δ0 moments for
some δ0 > 0, then(

rZ
(r)
1 , . . . , rZ

(r)
J

)
⇒ (Z∗, . . . , Z∗) ,

where ⇒ denotes convergence in distribution, Z
(r)
j denotes

the steady-state queue length at station j for the rth sys-
tem, and Z∗ is an exponential random variable. This result
depends on the fact that the steady-state queue length vec-
tor collapses to the line where all queue lengths are equal,
in the sense that the deviations from the line are uniformly
bounded. This phenomenon of queueing systems in heavy
traffic is called state-space collapse (SSC).

Based on a discrete-time framework, the literature stud-
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ied similar results on SSC and heavy traffic limit for the
JSQ system using drift method [6], transform method [8]
and Stein’s method [9]. These studies, however, assumed
interarrival and service times with bounded supports, imply-
ing boundedness of all moments. In this work, we consider
the continuous-time JSQ system and relax this assumption,
demonstrating that only the 2 + δ0 moment is sufficient to
ensure steady-state convergence in heavy traffic.

Our result is underpinned by a novel methodology called
the basic adjoint relationship (BAR) approach. A significant
benefit of the BAR approach is that it directly characterizes
the stationary distribution of a queueing system, eliminating
the need to address their transient dynamics. This approach
has been successfully applied in recent studies [2, 3, 4, 7] to
derive SSC or weak convergence for other various queueing
systems.

2. MODEL SETTING
We consider a JSQ system with J parallel stations, in-

dexed by j ∈ J ≡ {1, . . . , J}. For each station j ∈ J , there
is an i.i.d. sequence of random variables {Ts,j(i), i ∈ N} and
a real number µj > 0. For the arrival source, there are an
i.i.d. sequence of random variables {Te(i), i ∈ N} and a real
number α > 0. All of the above are defined on a common
probability space (Ω,F ,P). We assume such J+1 sequences

{Te(i), i ∈ N}, {Ts,j(i), i ∈ N}j∈J (1)

are independent and unitized, that is, E[Te(1)] = 1 and
E[Ts,j(1)] = 1 for all j ∈ J . For each i ∈ N, Te(i)/α denotes
the interarrival time between the ith and (i+ 1)th arriving
jobs, and Ts,j(i)/µj stands for the service time of the ith job
at station j. Accordingly, α is the arrival rate, and µj is the
service rate at station j. We assume the following moment
condition on interarrival and service time distributions.

Assumption 1. We assume the interarrival and service
times have finite 2 + δ0 moments for some δ0 > 0. Specifi-
cally, for δ0 > 0, we assume

E
[
T 2+δ0
e (1)

]
<∞, and E

[
T 2+δ0
s,j (1)

]
<∞ for j ∈ J . (2)

The routing decisions adopt the JSQ policy, which as-
signs the arriving job to the station with the shortest queue
length. In the case of a tie, the job is assigned to the station
with the smallest index. We use u(z) to represent the rout-
ing decision when a job arrives and observes z = (z1, . . . , zJ)
jobs in the system, where zj is the queue length at station j,



including possibly the one in service. Specifically, the job is
routed to station j if u(z) = e(j), where e(j) denotes a J-
dimensional unit vector where the jth element is 1 and all
other elements are 0.

A JSQ system can be modeled as a Markov process as
follows. For time t ≥ 0, we denote by Zj(t) the queue length
at station j. Let Re(t) be the residual time until the next
arrival to the system, and Rs,j(t) be the residual service
time for the job being processed at station j if Zj(t) > 0 or
the service time of the next job to be processed at station j
if Zj(t) = 0. We write Z(t) and Rs(t) for J-dimensional
random vectors whose jth element are Zj(t) and Rs,j(t),
respectively. For any t ≥ 0, we set

X(t) = (Z(t), Re(t), Rs(t)) .

Then {X(t), t ≥ 0} is a Markov process with respect to
the filtration FX = {FXt , t ≥ 0} defined on the state space
S = ZJ+ × R+ × RJ+, where FXt = σ({X(s), 0 ≤ s ≤ t}). We
assume that each sample path of the process {X(t), t ≥ 0}
is right-continuous and has left limits.

To carry out the heavy traffic analysis, we consider a se-
quence of JSQ systems indexed by r ∈ (0, 1). To keep the
presentation clean, we set the arrival rate as the only pa-
rameter dependent on r and denote by α(r) the arrival rate
for the rth system. All other parameters are assumed to
be independent of r, including the service rates {µj}j∈J ,
unitized interarrival and service times specified in (1). We
parameterize r as

r =
∑
j∈J

µj − α(r),

under which the traffic intensity ρ(r) ≡ α(r)/
∑
j∈J µj → 1

as r → 0, that is, the system is in heavy traffic. We then de-
note by {X(r)(t), t ≥ 0} the corresponding Markov process
in the rth system. Our result is based on the steady-state be-
havior. This motivates us to make the following assumption.
Under some mild distributional assumptions on interarrival
times, the following assumption holds [1].

Assumption 2. For each r ∈ (0, 1), the Markov process

{X(r)(t), t ≥ 0} is positive Harris recurrent and has a unique

stationary distribution π(r).

For r ∈ (0, 1), we denote by

X(r) = (Z(r), R(r)
e , R(r)

s )

the random vector that follows the stationary distribution.
To simplify the notation, we use Eπ[·] (rather than Eπ(r) [·])
to denote expectation concerning the stationary distribution
when the index r is clear from the context.

3. MAIN RESULTS
In this section, we demonstrate that the vector of the

scaled steady-state queue length rZ(r) weakly converges to
a vector whose elements are the same exponential random
variable Z∗ in heavy traffic.

Theorem 1. Suppose Assumptions 1 and 2 hold. As r →
0, we have (

rZ
(r)
1 , . . . , rZ

(r)
J

)
⇒ (Z∗, . . . , Z∗) ,

where Z∗ is an exponential random variable with mean

m =
1

2J

∑
j∈J

µj
(
c2e + c2s,j

)
. (3)

Here, c2e is the squared coefficient of variation (SCV) of the
interarrival time, and c2s,j is the SCV of the service time at
station j.

We recall that for a positive random variable U , its SCV,
denoted as c2(U), is defined to be c2(U) = var(U)/(E[U ])2.

To prove Theorem 1, we establish the SSC and weak con-
vergence of the scaled average queue length as follows.

Proposition 2 (State-Space Collapse). Suppose
Assumptions 1 and 2 hold. The difference between the queue
length and the average queue length is uniformly bounded in
heavy traffic, i.e.,

sup
r∈(0,µmin/2)

E
[
max
j∈J

∣∣∣Z(r)
j − Z̄

(r)
∣∣∣1+δ0/(1+δ0)] <∞, (4)

where Z̄(r) =
∑
j∈J Z

(r)
j /J and µmin = minj∈J µj.

Remark 1. Proposition 2 is enough to support Theo-
rem 1. Furthermore, if the moment condition in Assump-
tion 1 is strengthened to M + δ0, this SSC result can be
similarly extended to M + δ0/(M + δ0), as discussed in [5].

Proposition 3. Suppose Assumptions 1 and 2 hold. As
r → 0, we have

rZ̄(r) ⇒ Z∗,

where Z∗ is an exponential random variable defined in (3).

Proposition 2 and Markov’s inequality imply that for any

station j ∈ J , rZ
(r)
j − rZ̄(r) converges to 0 in probability.

Theorem 1 is, hence, a direct consequence of Proposition 3.
The proofs of Propositions 2 and 3 utilize the BAR, which

will be introduced in Section 4. The proof sketch for design-
ing and applying test functions to the BAR is outlined in
Section 5, with a comprehensive version in [5].

4. BASIC ADJOINT RELATIONSHIP
In this section, we introduce the BAR of the JSQ sys-

tem for our analysis, which enables us to characterize the
stationary distribution of the JSQ system directly.

To characterize the jumps of states resulting from arrivals
and service completions, we employ the Palm measure pro-
posed in [3]. The Palm measure for external arrivals is rep-
resented by Pe and for service completions at station j ∈ J
by Ps,j . The following lemma characterizes the relationship
between the pre-jump and post-jump states under the Palm
measures, and its proof follows from Lemma 6.3 in [3].

Lemma 4. The pre-jump state X− and the post-jump
state X+ have the following representation,

X+ = X− +
∑
j∈J

(
e(j), Te/α, 0

)
1

(
u(Z−) = e(j)

)
, under Pe,

X+ = X− +
(
−e(j), 0, e(j)Ts,j/µj

)
, under Ps,j , j ∈ J ,

where Te, Ts,j for j ∈ J are random variables defined on the
measurable space (S2,B(S2)), such that, under Palm dis-
tribution Pe, Te is independent of X− and has the same
distribution as that of Te(1) on (Ω,F ,P), and, under Palm
distribution Ps,j, Ts,j is independent of X− and has the same
distribution as that of Ts,j(1) on (Ω,F ,P).



Let D be the set of bounded function f : S→ R satisfying
the following conditions: for any z ∈ ZJ+, (a) the function
f(z, ·, ·) : R+ × RJ+ → R is continuously differentiable at all
but finitely many points; (b) the derivatives of f(z, ·, ·) in
each dimension have a uniform bound over z.

For a JSQ system with a Markov process {X(t), t ≥ 0}
and steady-state vector X defined in Section 2, we obtain
the BAR as follows: for any f ∈ D,

Eπ [Af(X)] + αEe [f(X+)− f(X−)]

+
∑
j∈J

λjEs,j [f(X+)− f(X−)] = 0, (5)

where λj = µjP(Zj > 0) is the departure rate at station j
with the property

∑
j∈J λj = α by conservation of flow, and

the terms on the right-hand side of (5) correspond to state
changes by jumps resulting from arrival and service comple-
tion, respectively; A is the “interior operator” defined as

Af(x) = −∂f(x)

∂re
−
∑
j∈J

∂f(x)

∂rs,j
1(zj > 0), x = (z, re, rs) ∈ S,

which characterizes the system evolution between jumps.
The derivation of the BAR (5) follows from Section 6 of [3].

5. SKETCH OF PROOF
In this section, we present the proof sketch for Proposi-

tions 2 and 3 using the BAR approach. The detailed proof
is provided in [5]. To prove Proposition 2, we utilize the
mathematical induction following the idea from [7] and the
BAR in (5) with test functions inspired by [6, 7].

We first denote the components of the vector z parallel
and perpendicular to e ≡ (1, . . . , 1) by

z‖ =
〈z, e〉
‖e‖2 e = z̄e, z⊥ = z − z‖ = (zj − z̄)j∈J ,

where z̄ =
∑
j∈J zj/J and the norm is Euclidean norm.

To prove (4), it suffices to show that Eπ[‖Z⊥‖1+δ0/(1+δ0)] is
uniformly bounded for all r ∈ (0, µmin/2). Here, we present
a prove sketch for the integer moment bound of ‖Z⊥‖M
under the finite (M + 1)th moment in Assumption 1 and
then extend it to the non-integer case in [5].

Our statements include moment bounds for ‖Z(r)
⊥ ‖ and

some auxiliary results. For each integer n = 0, . . . ,M , there
exist positive and finite constants Cn, Dn, En, Fn that are
independent of r such that the following statements hold for
all r ∈ (0, µmin/2):

(S1) Eπ[‖Z(r)
⊥ ‖

n] ≤ Cn.

(S2) Ee[‖Z(r)
−,⊥‖

n] +
∑
`∈J Es,`[‖Z(r)

−,⊥‖
n] ≤ Dn.

(S3) Eπ[‖Z(r)
⊥ ‖

nψM−n(R
(r)
e , R

(r)
s )] ≤ En.

(S4) Ee[‖Z(r)
−,⊥‖

nψM−n(R
(r)
−,e, R

(r)
−,s)]

+
∑
`∈J Es,`[‖Z(r)

−,⊥‖
nψM−n(R

(r)
−,e, R

(r)
−,s)] ≤ Fn,

where ψn(re, rs) = rne +
∑
j∈J r

n
s,j .

The function ψM−n appearing in the auxiliary statements
(S3)-(S4) depends on the moment condition of order M + 1.
This design of the auxiliary statements plays a crucial role
in reducing the moment condition required for establishing

the uniform bounds on Eπ[‖Z(r)
⊥ ‖

M ].

For the induction step of the mathematical induction, we
verify (S1)-(S4) for each given n, under the induction hy-
potheses that they are true for all k = 0, . . . , n − 1. To
prove the above statements, we employ the BAR (5) with
test functions as follows:

fn(x) =
1

n+ 1
‖z⊥‖n+1 − z′⊥u(z) · α(r)re · ‖z⊥‖n−1

+ z′⊥ (µ ◦ rs) · ‖z⊥‖n−1,

fn,D (x) = ‖z⊥‖nψ1(re, rs),

fn,E (x) = ‖z⊥‖nψM−n+1(re, rs),

fn,F (x) = ‖z⊥‖nψM−n(re, rs)ψ1(re, rs),

where ◦ is the element-wise product.
To prove Proposition 3, we utilize the following exponen-

tial test function in [3] to construct the moment generat-
ing function (MGF) of steady-state total queue length. For
θ ≤ 0, we define

fθ(x) = exp

(
θ
∑
j∈J

zj

)
exp

(
−α(r)η(θ)re −

∑
j∈J

µjξj(θ)rs,j

)
,

where η(θ) and ξ(θ) satisfy some equations. With such a
design, only the first term in BAR (5) regarding π will be
kept, and the jump terms become 0. After setting θ to rθ
and utilizing the Taylor expansions for η(θ) and ξj(θ), we
prove the limit MGF of the scaled total queue length has
the format of an exponential distribution with mean Jm:

lim
r↓0

Eπ

[
exp

(
rθ
∑
j∈J

Z
(r)
j

)]
=

1

1− θJm,

where m is defined in (3). The detailed proof is given in [5].
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