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ABSTRACT

A well-designed scheduling policy can significantly improve
the performance of a queueing system, without requiring any
additional resources. While scheduling is well-understood in
the single-server setting, much less is known in the mul-
tiserver setting. Results are particularly sparse in mod-
erate load settings, outside of the asymptotic regimes of
heavy traffic and light traffic. Multiserver SRPT is known
to achieve asymptotically optimal mean response time as in
the limit as load approaches capacity, and no better policy
is known outside of that asymptotic regime.

We give the first family of multiserver scheduling policies
to achieve lower mean response time than SRPT, by delaying
the service of small jobs to improve overall server utilization.

In light of this improvement, we seek to prove tighter lower
bounds on mean response time in the M/G/k. We intro-
duce the WINE lower-bounding framework, allowing multi-
ple lower bounds to be combined into a single, stronger lower
bound. Moreover, we introduce and analyze the Increasing
Speed Queue, which captures the variable-service-speed na-
ture of the M/G /k system, and use it to further strengthen
our lower bound on M/G/k scheduling.

1 Introduction

Scheduling is an important tool for improving the perfor-
mance of queueing systems, both in theory and in practice.
A well-chosen scheduling policy can improve system perfor-
mance without requiring increased resources.

Scheduling is well-understood in the single-server setting,
with the Shortest Remaining Processing Time (SRPT) pol-
icy known to minimize mean response time when job sizes
(durations) are known in advance [8].

Modern queueing systems are more often multiserver, hav-
ing the capacity to serve several jobs at a time. Much less
is known about scheduling in multiserver systems, such as
the M/G/k, even for just k = 2 servers. This especially true
under moderate load, where the system is neither inundated
with jobs, nor working well below capacity. Asymptotic re-
sults are known in the heavy traffic limit (p — 1) where p,
the load, is the long-run average fraction of servers which are
busy. SRPT-k, the multiserver equivalent of SRPT, achieves
asymptotically optimal mean response time when job sizes
are known [4]. Scheduling becomes irrelevant in the light-
traffic limit (p — 0).
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But under moderate load, little is known about optimal
scheduling in the M/G/k [2]. This is unfortunate, because
moderate load is the regime of most importance in prac-
tice. Operating a queueing system is always a tradeoff be-
tween using resources efficiently and keeping queueing times
low. Balancing this tradeoff places the system in moderate
load. Scheduling can be a win-win for this tradeoff, but to
understand how much improvement is possible we need to
understand optimal scheduling under moderate load.

Observing SRPT-k’s asymptotically optimal performance
in heavy traffic provokes a natural question:

Do there exist M/G/k scheduling policies with
lower mean response time than SRPT-k under
moderate load?

This question is open: No policies which outperform SRPT-
k have preciously been presented, at any load, for any job
size distribution. We present the SRPT-Except-k+1 (SEK)
policy, which we empirically demonstrate in is the first pol-
icy to achieve lower mean response time than SRPT-k under
moderate load (see Section 2).

Our result, showing that there is room for improvement
beyond SRPT-k, provokes another natural question:

How much improvement beyond SRPT-k is pos-
sible under moderate load?

Previously, only naive lower bounds on mean response
time for M/G/k scheduling have appeared in the literature.
A straightforward bound is the mean service time. This
bound is tight at low load, but does not increase with in-
creasing load, making it loose at moderate load. Another
standard bound is the resource-pooled bound, where the
M/G/k is compared against an M/G/1 system with a single
giant server, as fast as all k servers put together, schedul-
ing according to the single-server-optimal SRPT policy [4].
This bound is tight at high load, but does not increase with
the number of servers k, making it loose at moderate load.

In Section 3, we introduce the WINE framework for lower
bounding mean response time in the M/G/k. WINE is an
existing technique for relating mean response time to mean
relevant work, but it has only ever been used to upper-bound
mean response time in the past [6,7,10]. We initiate its use in
lower-bounding mean response time. This framework allows
us to combine bounds such as the service-time bound and
resource-pooled-SRPT bound to prove new, stronger lower
bounds on M/G/k mean response time under an arbitrary
scheduling policy.
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Figure 1: Improvement ratio 1 — EITSRPT] between

the SEK policy and the SRPT-k£ policy, in an
M/M/2 with S = Ezp(1l), for several cutoff parame-
ters ¢ and over loads p € [0.75,0.996]. Simulated 10°
arrivals on coupled arrival processes.

However, to close the gap towards optimality, we need to
go beyond the existing sources of lower bounds on mean rel-
evant work. Neither resource-pooled bound nor the service-
time bound capture the fundamental nature of work com-
pletion in the M/G/k system: Moving incrementally be-
tween no servers active, one server, two servers, up to k
servers active. To capture this behavior, we define and ana-
lyze the Increasing Speed Queue (ISQ) in Section 4, a novel
queueing system which lower bounds relevant work in the
M/G/k. Our analysis employs a novel application of the
drift method [1], which may be of independent interest. Us-
ing our ISQ analysis, we obtain the tightest-known lower
bounds on mean response time under moderate load.

2 SRPT-Except-k +1

We introduce a new scheduling policy for the M/G/k sys-
tem, the SRPT-Ezxcept-k+1 (SEK) policy [3, Section 8.3.1].

If there are k or fewer jobs in the system, all are served.
If there are k + 2 or more jobs in the system, SEK matches
SRPT-k: Serve the k jobs of least remaining size.

SEK can diverge from SRPT-k when there are k+1 jobs in
the system. SEK is parameterized by a switching parameter
c. If there are k jobs in the system with remaining size < ¢,
and the final job has remaining size > ¢, SEK serves the
k — 1 jobs with least remaining size, as well as the job with
largest remaining size. Otherwise, SEK matches SRPT-k.

The intuition behind the SEK policy is that when SEK
diverges from SRPT-k, SRPT-k is about to waste service
capacity, if no job arrives in the next ¢ time. By running
the job with largest remaining size, the wasted capacity is
diminished, or at least delayed.

As shown in Fig. 1, in the M/M/2 setting, the SEK policy
outperforms the SRPT-k policy by a small but consistent
margin, over a range of loads p and a range of parameter
values c. The largest improvement observed in this dataset
is a margin of 0.32%, achieved by SEK (¢ = 1) at load 0.956.
For each parameter value ¢, SEK empirically improves upon
SRPT for all loads p above some threshold depending on c.

In further empirical investigation, we have observed larger
improvement margins under higher-variance workloads, up
to about a 1% improvement. In subsequent work, we hope
to characterize the combinations of load p, parameter ¢, and
size distribution S for which SEK can be guaranteed to im-
prove upon SRPT.
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Figure 2: Comparison of lower bounds on opti-

mal mean response time for scheduling policies in
an M/M/2 with S = Ezp(l). Bounds: resource-
pooled M/G/1 SRPT, service time (M/G/x), the
WINE combination of those two, the Increasing
Speed Queue, and the WINE combination of all
three.

3 Lower Bounds: WINE Framework

In Section 2, the SEK policy was empirically shown to achieve
lower mean response time than SRPT-k, at certain loads.

But how much more improvement is possible? We seek lower

bounds on M/G/k mean response time at moderate load.

Two straightforward bounds are the service-time bound
and the resource-pooled M/G/1 bound. First, we can lower
bound response time by service time. We adopt the conven-
tion that the M/G/k servers run at speed 1/k, so a job of size
s requires ks time in service. As a result, E[T"] > KE[S],
for any M/G/k policy 7, where S is the job size distribution.
This bound is tight at low load (p — 0). We refer to this
bound as the M/G/oo bound, because in an infinite-server
system with servers that run at speed 1/k, all job’s response
times would be kE[S]. In Fig. 2, we show this bound for the
M/M/2 system as the orange line.

Throughout this section, we use the M/M/2 as an exam-
ple, though our bounds are generic over all job size distri-
butions. Note that job sizes are known to the scheduling
policy in advance, so jobs are not interchangeable.

The resource-pooled bound compares the M/G/k against
a resource-pooled M/G/1 where the single server has speed
1, the same as the total speed as all k servers in the M/G/k.
The resource-pooled M/G/1 has a superset of the options
available as are available in the M/G/k. The policy which
minimizes mean response time in the M/G/1 is the single-
server SRPT policy, so we know that E[T™] > E[TS"FT1]
This bound is tight in heavy traffic (p — 1), and is at
the heart of the heavy-traffic optimality proof of SRPT-k
and several other policies in more general settings [4-6]. In
Fig. 2, we show this bound as the blue curve.

Unfortunately, both of these bounds are loose under mod-
erate load. The service-time bound does not increase with
load, while the resource-pooled M/G/1 bound does not in-
crease with the number of servers k. To achieve a strong
lower bound under moderate load, we need a framework
that can incorporate both load and number of servers.

We introduce the WINE framework for lower-bounding
mean response time in the M/G/k. The recently-developed
WINE formula characterizes of mean response time under



an arbitrary policy in terms of mean relevant work under
that policy [9,10]:

In past work, WINE has been used to upper-bound mean
response time by upper-bounding mean relevant work un-
der a specific policy [6,7,10]. In contrast, we use WINE to
lower-bound mean response time under an arbitrary policy
by lower-bounding mean relevant work under an arbitrary
policy. Essentially, WINE provides a way to combine differ-
ent methods of lower-bounding mean relevant work into a
combined lower bound on mean response time.

We give three ways of lower-bounding mean relevant work:
in Section 3.1, using the service-time lower bound and using
the resource-pooled M/G/1 lower bound, and in Section 4
using a novel approach, which we call the Increasing Speed
Queue. By taking the maximum of these bounds at each
relevancy cutoff x, we can achieve a significantly stronger
lower bound on response time than with past approaches.

3.1 Relevant-work Lower Bounds

For the service-time lower bound, consider the size y at
which a job first becomes relevant, either upon arrival or
after receiving service to bring its size down to x. The job
will spend ky time in service after that point, contributing
a total of ky?/2 relevant work over its time in the system:

EWz] > "2 Bmin(s, 2)?).

For the resource-pooled M/G/1 lower bound, we lower
bound relevant work in the M/G/k by relevant work in the
SRPT-1 system, which minimizes relevant work for each rel-
evancy cutoff x over all single-server policies:

S A E[min(S, x)2]

W) > 5

, where p, = AE[S1{S < z}].

Simply taking the maximum of these bounds for each =
and applying WINE gives new, stronger bounds on response
time under moderate load. In Fig. 2, we show this bound
for the M/M/2 system as the green curve labeled “WINE
2”. Note that the green curve significantly improves upon
the prior blue and orange curves for loads p > 0.5.

4 Lower Bounds: Increasing Speed Queue

The increasing-speed queue (ISQ) is a single-server variable-
speed queue. When the first job arrives to an empty queue,
the server initially runs at speed 1/k. If another job arrives
before the system empties, the server now runs at speed 2/k.
With each subsequent arrival, the server’s speed increases,
until it reaches speed 1. The server will then stay at speed
1 until the system empties.

The total work in the ISQ system is a lower bound on
work in the M/G/k, because the M/G/k cannot serve more
jobs than have arrived since the system was last empty, nor
can it have total service rate higher than 1.

A lower bound on relevant work in the M/G/k can be
derived by considering an ISQ system whose job size distri-
bution is truncated at size x. More sophisticated, tighter
lower bounds can be derived by also incorporating the jobs
with initial size larger than x into the analysis.

Thus, if we can analyze the ISQ system, we can prove
tighter lower bounds on mean response time in the M/G/k.

To analyze the ISQ system, we use a novel variant of the
drift method [1]. By carefully crafting a test function to
have appropriate drift, we can characterize mean work in
the ISQ system. In the k = 2 system, we use the following
test function f(w, ), where w is work and 7 is system speed:

flw, 1) =w?, £(0,0)=0,
5 w 1— 672w>\
flw,1/2) =w” + 5\ + EECICRE
We thereby derive the following formula for mean work:
ppwise - AEISL | BIS] - (1—S(21)/21
2(1— AE[S]) 35— 520

’

where S is the Laplace-Stieljes transform of the job size dis-
tribution S. Similar results hold for all k.

From this analysis, we can lower bound mean relevant
work in the M/G/k. By integrating this bound using the
WINE framework, we can directly lower bound mean re-
sponse time in the M/G/k. In Fig. 2, we show this bound
for the M/M/2 system as the red curve labeled “ISQ-2”.
This bound is appreciably stronger than the green WINE-2
curve, with up to a 6% improvement.

By combining all three lower bounds using the WINE
framework, we can improve further. In Fig. 2, we show this
bound for the M/M/2 system as the dotted purple curve
labeled “WINE 3”. This bound slightly improves upon the
red ISQ-2 curve, with up to a 2% improvement. The im-
provement is largest at low load, when the ISQ-2 bound falls
below the service-time bound, and at moderately high load,
where for some x the M/G/1/SRPT bound is stronger than
the ISQ-2 bound. This magnitude of bound-strengthening
is important, when compared to SEK’s margin of improve-
ment over SRPT-k.

5 References

[1] A. Eryilmaz and R. Srikant. Asymptotically tight
steady-state queue length bounds implied by drift
conditions. Queueing Systems, 72:311-359, 2012.

(2] I. Grosof. Open problem—M/G/k/SRPT under medium
load. Stochastic Systems, 9(3):297-298, 2019.

(3] I. Grosof. Optimal Scheduling in Multiserver Queues. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, 2023.

[4] I. Grosof, Z. Scully, and M. Harchol-Balter. SRPT for
multiserver systems. Performance Evaluation,
127-128:154-175, 2018.

(5] I. Grosof, Z. Scully, and M. Harchol-Balter. Load balancing

guardrails: Keeping your heavy traffic on the road to low

response times. Proc. ACM Meas. Anal. Comput. Syst.,

3(2), June 2019.

I. Grosof, Z. Scully, M. Harchol-Balter, and

A. Scheller-Wolf. Optimal scheduling in the multiserver-job

model under heavy traffic. Proc. ACM Meas. Anal.

Comput. Syst., 6(3), Dec. 2022.

[7] Y. Hong and Z. Scully. Performance of the Gittins policy in
the G/G/1 and G/G/k, with and without setup times.
Performance Evaluation, 163:102377, 2024.

[8] L. Schrage. A proof of the optimality of the shortest

remaining processing time discipline. Operations Research,

16(3):687-690, 1968.

Z. Scully. A New Toolbox for Scheduling Theory. PhD

thesis, Carnegie Mellon University, Pittsburgh, PA, 2022.

[10] Z. Scully, I. Grosof, and M. Harchol-Balter. The Gittins

policy is nearly optimal in the M/G/k under extremely
general conditions. Proc. ACM Meas. Anal. Comput. Syst.,
4(3), Nov. 2020.

6

9



	Introduction
	SRPT-Except-k+1
	Lower Bounds: WINE Framework
	Relevant-work Lower Bounds

	Lower Bounds: Increasing Speed Queue
	References

