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ABSTRACT
In this paper, we initiate the study of an online conver-
sion problem that incorporates group fairness guarantees.
This problem aims to distribute a resource with fixed ca-
pacity to a sequence of buyers based on their offered prices.
Each buyer belongs to a distinct group, and the objective is
to maximize revenue while ensuring fairness across groups
by guaranteeing that each group receives a predetermined
quantity of resources. We propose a novel threshold-based
online algorithm and prove that it achieves the optimal com-
petitive ratio with fairness guarantees.

1. INTRODUCTION
The online conversion is a classic resource allocation prob-

lem in the literature of online algorithms [1]. In this prob-
lem, a decision maker aims to sell a fixed amount of divisi-
ble resources to a sequence of online arriving buyers. Each
buyer offers their conversion price for purchasing per-unit
resources upon arrival, and the seller immediately and ir-
revocably decides the amount of resources to sell without
knowing the prices and the number of future buyers. The
goal is to maximize the seller’s total revenue. Under com-
petitive analysis, this problem and its variants have been
well-studied, and it is known that a threshold-based algo-
rithm can achieve optimal competitive performance [2].

Although existing algorithms can achieve optimal perfor-
mance in maximizing the seller’s revenues, there is a concern
that specific subgroups of buyers (defined by characteristics
such as age, financial status, or education) may be consis-
tently disadvantaged in obtaining the resource due to their
limited purchasing power and delayed access to information.
This issue becomes particularly critical when the seller is
allocating essential resources (e.g., energy, food). Conse-
quently, it is increasingly important to incorporate fairness
guarantees across different groups in algorithm design. Some
recent research has begun to address this need by integrat-
ing fairness guarantees into resource allocation problems,
including knapsack problems [3] and online matching [4].

Motivated by the algorithmic challenges posed by the afore-
mentioned societal issues, we introduce and study online
conversion with multi-class arrivals and group fairness con-
straints. In this problem, each buyer belongs to a spe-
cific class (or group), and our objective is to ensure fair-
ness by guaranteeing that each class receives a predeter-
mined amount of resources. We propose a novel, modi-
fied threshold-based algorithm tailored to this challenge and
demonstrate that it achieves optimal competitive perfor-
mance under the given fairness constraint. Furthermore,
our algorithms are promising for the allocation of essential
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resources in various contexts. For instance, in energy sys-
tems, a charging station might distribute energy to electric
vehicles across diverse categories, such as private, commer-
cial, and public vehicles. Ensuring group fairness in such
scenarios is crucial for equitable resource distribution, which
highlights the practical relevance of our proposed approach.

2. PROBLEM STATEMENT
We formally define online conversion with multi-class ar-

rivals, termed Online Multi-class Conversion (OMcC), as
follows: A seller with an initial resource of B is trying to
maximize its revenue by trading its resource to a sequence
of buyers arriving one at time. Upon the arrival of buyer
t ∈ {1, 2, . . . , T}, she offers a price pt; an immediate and
irrevocable decision xt ∈ [0, 1] must be made regarding the
amount of resource to be sold to this buyer. The goal is to
maximize the total revenue in the end, i.e.,

∑
t ptxt, subject

to the resource constraint
∑

t xt ≤ B.
In OMcC, each buyer t belongs to a specific class jt ∈ [K].

We assume that there exists a class-dependent finite support
for possible prices within each class.

Assumption 1. We assume that the prices of buyers in
each class j ∈ [K] are normalized and bounded within [1, θj ],
i.e., pt ∈ [1, θj ] holds for all j ∈ [K] and t ∈ [T ] if jt = j.

We refer to θj as the fluctuation ratio of class j. Intu-
itively, θj ≥ 1 holds for all j ∈ [K] and a smaller fluc-
tuation ratio indicates that arrivals within that class tend
to be more homogeneous. We also assume w.l.o.g. that
θ1 ≤ θ2 ≤ · · · ≤ θK .
Since the seller aims to maximize her revenue, resources

tend to be allocated to buyers with high prices, even if they
are all from the same class. To avoid such unfair treatment
of different classes, we seek the following fairness guarantee,
referred to as group fairness by quantity (GFQ) [3].

Definition 1 (Group Fairness by Quantity). The total
amount of resource allocated to buyers from group j ∈ [K]
is at least mj for all j ∈ [K].

It is worth noting that when mj = B/K holds for all j ∈
[K], GFQ reduces to the well-known proportional fairness
(by groups/classes); namely, each class will receive at least
1/K fraction of the total resource. The fairness requirement
m := {mj}j∈[K] is provided beforehand, and our objective
is to study how to design online algorithms for a given m.
In the online setting, the sequence of price arrivals does

not necessarily follow any pattern and could be adversari-
ally chosen. Following the worst-case competitive analysis
framework, the performance of an online algorithm is quan-
tified by its competitive ratio. Given an arrival instance
σ = {p1, · · · , pT }, let us denote by OPT(σ) the optimal
revenue achieved in the offline setting when the information
of the arrival sequence σ is known beforehand. Mathemati-
cally, OPT(σ) can be obtained by solving the following linear



program.

OPT(σ) = max
xt∈[0,1]

∑
t∈[T ]

pt · xt

s.t.
∑

t∈[T ]
xt ≤ B,∑

t∈[T ]
xt · 1{jt=j} ≥ mj , ∀j ∈ [K].

Let ALG(σ) denote the revenue achieved by an on-
line algorithm ALG. Our goal is to develop online algo-
rithms that minimize the worst-case competitive ratio, i.e.,

minALG maxσ∈Ω
OPT(σ)
ALG(σ)

, where Ω represents the family of ar-

rival sequences that satisfy Assumption 1.

3. MAIN RESULTS

3.1 A Threshold-based Algorithm
We propose a threshold-based algorithm in Algorithm 1

for OMcC with group fairness guarantee. Upon receiving the
first set of ⌈mj⌉ buyers from each class j ∈ [K], Algorithm 1
ensures the corresponding fairness guarantee sought for that
class based on Definition 1. As a result, the M -portion of to-
tal resource B is reserved to meet the fairness requirements,
where M =

∑
j mj . The remaining (B −M)-portion of the

total resource is then allocated based on the threshold func-
tion ϕ(ut) : [0, B − M ] → [1, θK ], where ut represents the
utilization level of the algorithm from the (B −M)-portion
of the resource up to time t.

Algorithm 1: Threshold-based algorithm for OMcC
with group fairness guarantee

Input: B; (mj , θj), ∀j ∈ [K].
Initialization: u0 = 0, f j

0 = 0, ∀j ∈ [K].
while buyer t arrives do

Obtain the price and class information of buyer t:
pt and jt ;

Set xt = 0, yt = 0
if f jt

t−1 < mjt then

yt = min{1,mjt − f jt
t−1};

Update f jt
t = f jt

t−1 + yt;

end
Decide the conversion according to:
if yt < 1 then

if pt ≥ ϕ(ut−1) then

xt = min{ argmax
a∈[0,1−yt]

{a · pt −
∫ ut−1+a

ut−1

ϕ(η)dη},

B −M − ut−1}

end

end
Update the cumulative conversion:
ut = ut−1 + xt.

Update the conversion amount of buyer t:
xt = xt + yt

end

Theorem 1 below shows that Algorithm 1 can achieve the
optimal competitive ratio if the threshold function ϕ : [0, B−
M ] → [1, θK ] is strategically designed.

Theorem 1. There exits a threshold function ϕ such that
Algorithm 1 is optimal in the sense that no online algorithm
can achieve a smaller competitive ratio under Assumption 1
with GFQ guarantee.

In the following section, we formally present our design of
the optimal threshold functions for the cases when K = 1
and K = 2, and briefly discuss our general results regarding
K ≥ 2 due to page limit.

3.2 Optimal Threshold Function Design

3.2.1 Single-Class Case (K = 1)
We start with the basic case that there is only one class

of buyers with prices bounded within [1, θ]. In this case, the
definition of GFQ basically requires that at least m units of
the total resources be allocated to buyers regardless of their
prices. Theorem 2 below shows the design of the optimal
threshold function for OMcC with K = 1.

Theorem 2. The competitive ratio of Algorithm 1 when
K = 1 can be determined in the following two cases.

• When m ≤ B
1+ln θ

, let α0 := 1 + ln θ, Algorithm 1 is
α0-competitive if the threshold function ϕ is given by

ϕ(u) =

{
1 u ∈ [0, B

α0
−m],

e

(
α0·(u+m)

B
−1
)

u ∈ ( B
α0

−m,B −m].

• When m > B
1+ln θ

, let α1 := B
B−m

·W (θ(B
m

− 1)), where

W (·) is the Lambert function, Algorithm 1 is α1-competitive
if the threshold function ϕ is given by

ϕ(u) =
α1m

B
· e(

α1·u
B ), ∀u ∈ [0, B −m].

Note that when m is small, the best-possible competi-
tive ratio for OMcC with GFQ guarantee is 1 + ln θ. As m
approaches B, α1 converges to θ. This implies that when
m = B, no online algorithm can effectively reserve any por-
tion of its resource for future buyers, i.e., no online algorithm
can outperform the trivial competitive ratio θ.

3.2.2 Two-Class Case (K = 2)
In this section, we extend the results of the previous sec-

tion to the two-class arrival case. Recall that we assume
w.l.o.g. that θ2 ≥ θ1. Theorem 3 below shows the design of
the optimal threshold function for OMcC with K = 2.

Theorem 3. The competitive ratio of Algorithm 1 when
K = 2 can be determined in the following three cases.

• When M ≤ B
α0

, where α0 is defined as follows:

α0 := 1 + ln θ2 −
m1

B
ln

θ2
θ1

,

Algorithm 1 is α0-competitive if ϕ is given by

ϕ(u) =



1 u ∈ [0, B
α0

−M ]

e

(
α0(u+M)−B

B

)
u ∈ ( B

α0
−M,

B
α0

−M + B
α0

ln θ1],

e

(
α0(u+M)−B−m1 ln θ1

B−m1

)
u ∈ ( B

α0
−M + B

α0
ln θ1

, B −M ].

• When M ∈ ( B
α1

, B
α1

θ1], where α1 is defined as follows:

α1 :=
B

B −M
W

(
θ2(B −M)

M
e

(
−m1

B
ln

θ2
θ1

))
,

Algorithm 1 is α1-competitive if ϕ is given by

ϕ(u) =


v∗e(

α1u
B ) u ∈ [0, B

α1
ln θ1

v∗ ],

v∗e

(
α1u−m1 ln

θ1
v∗

B−m1

)
u ∈ [ B

α1
ln θ1

v∗ , B −M ],

where v∗ = α1M/B.
• When M ∈ ( B

α2
θ1, B], where α2 is defined as follows:

α2 := θ1
m1

M
+

B −m1

B −M
W

(
θ2(B −M)

M
e

(
− θ1m1(B−M)

(B−m1)M

))
,

Algorithm 1 is α2-competitive if ϕ is given by

ϕ(u) = v∗e

(
α2u

B−m1

)
, ∀u ∈ [0, B −M ],

where v∗ = (α2M −m1θ1)/(B −m1).



(a) m2 = 5, α0 = 2.18 (b) m2 = 35, α1 = 2.26 (c) m2 = 60, α2 = 2.76

Figure 1: Threshold function dynamics with θ1 = 2, θ2 = 4, B = 100 and m1 = 30 and changing m2.

Theorem 3 shows that when M approaches B, α2 con-
verges to θ1

m1
B

+ θ2
B−m1

B
. The intuition is that when M =

B, due to the fairness requirement, no online algorithm can
effectively reserve any portion of its resource for future buy-
ers. Thus, in the worst case, no online algorithm can per-
form better than B, while the offline optimal algorithm may
achieve the maximum revenue θ1m1 + θ2(B −m1), leading
to the worst-case competitive ratio θ1

m1
B

+ θ2
B−m1

B
.

Remark 1. At first glance, it might appear that the three
intervals of M that define the three cases in Theorem 3 are
not continuous and do not fully cover the range of [0, B].
However, as the value of M approaches the end-point of one
interval (e.g., the end-point B

α1
θ1 of the second interval), the

start-point of the next interval (e.g., B
α2

θ1) also converges
to the end-point of the last interval. This observation is
illustrated in Figure 2, where α0 and α1 converge to the
same value as m2 approaches 15.91.

3.2.3 General Cases (K ≥ 2)
Our results can be generalized to scenarios with more than

two classes, i.e., K ≥ 2. An informal statement of our most
general results is given in Theorem 4 below.

Theorem 4 (Informal). For OMcC with K ≥ 2 classes,
there exists a threshold function ϕ with at most K + 1 seg-
ments such that Algorithm 1 achieves the optimal competi-
tive ratio. The number of segments and the competitive ratio
depend on the sum of the minimum allocation requirements
(i.e., m := {mj}j∈[K]) prescribed by the GFQ requirement.

4. NUMERICAL RESULTS
In this section, we focus on OMcC with two classes and

aim to numerically illustrate the design of the optimal thresh-
old functions given in Theorem 3. For the M -portion of
the resource, where a buyer is accepted irrespective of their
price, we set the threshold to be 1. As for the remaining por-
tion, we use the threshold function outlined in Theorem 3.
In Figure 1, we fix all the parameters of the problem except
the value of m2. For three different values of m2, Figure 1
shows the corresponding threshold function that Algorithm
1 uses based on Theorem 3. It can be seen that depending
on the value of M , the threshold function may be designed
in three different cases. For each case, the threshold func-
tion contains at most three segments (illustrated in different
colors in Figure 1). Moreover, the threshold of each segment
increases w.r.t. the resource utilization (i.e., the portion of
the resources that have been allocated).

In Figure 2, we fix all the parameters except the value
of m2 and show how the competitive ratio of Algorithm 1
changes with variations in M . As m2 increases, the com-
petitive ratio of Algorithm 1, denoted by CR∗, continuously
increases. This outcome was foreseeable, since we should
allocate a larger share of resources to buyers regardless of

their prices to ensure fairness guarantee. Moreover, we can
observe that CR∗ switches from α0 to α1 and α2 w.r.t. the
increase of m2 (or equivalently, the increase of M).

Figure 2: Illustrating the competitive ratio as a function of
m2. CR

∗ denotes the optimal competitive ratio.

5. CONCLUSIONS AND FUTURE WORK
In this work, we initiated the study of online conversion

with multi-class arrivals and group fairness constraints. We
first considered the simple one-class case and then extended
our results to the two-class case. We also showed that it
is possible to extend our results to the general K-class case
with K ≥ 2. As a natural next step, it is interesting to inves-
tigate online multi-class conversion with other group fairness
constraints. Another interesting direction is to extend our
results to consider the trade-off between group fairness and
individual fairness within each class.
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