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1. INTRODUCTION
Multidimensional Markov processes arise in many aspects

of the mathematical performance analysis, modeling and
optimization of computer systems and networks. Within this
context, general classes of structured Markov processes are
of particular importance in both theory and practice. Our
primary focus in this paper is on the general class of M/G/1-
type processes, noting the important duality between M/G/1-
type, G/M/1-type, and quasi-birth-and-death processes [1].

Consider a discrete-time Markov process {X(n) ; n ∈ Z+ :=

Z≥0} on the state space Ω̂ = {(i, j) : i ∈ Z+, j ∈ [M ]} with
transition probability matrix P, where [M ] := {1, . . . ,M}
and M can be finite or infinite. The P matrix of the
M/G/1-type process has the block Toeplitz-like structure

P =


B0 B1 B2 B3 · · ·
A−1 A0 A1 A2 · · ·
0 A−1 A0 A1 · · ·
0 0 A−1 A0 · · ·
...

...
. . .

. . .
. . .

 , where Bi, i ∈ Z+,

and Ai, i ∈ Z≥−1, are nonnegative matrices in RM×M s.t.∑∞
i=−1 Ai and

∑∞
i=0 Bi are stochastic [3]. Markov processes

embedded at service completion epochs for the M/G/1 queue
have transition probability matrices of the form of P.

Our objective is to obtain the stationary distribution of
the M/G/1-type process {X(n) ; n ∈ Z+}. Define π :=
(π0,π1,π2, . . .), πi := (π̂(i, 1), π̂(i, 2), . . . , π̂(i,M)), π̂(i, j) :=
limt→∞ P[X(t) = (i, j)], ∀(i, j) ∈ Ω̂. The limiting probabil-
ity vector π is the stationary distribution for the stochastic
process. Assuming this process to be irreducible and ergodic,
its invariant probability vector π exists and is uniquely de-
termined as the solution of π = πP and π1 = 1, where
1 = (1, . . . , 1)⊤. Various functions of the stationary distri-
bution π can be used to obtain performance measures and
quantities of interest including those associated with levels
L(i) := {(i, j) : j ∈ [M ]} and phases P(j) := {(i, j) : i ∈
Z+}, such as measures of queue length and sojourn time.

One form of mathematical analysis to determine the sta-
tionary distribution of M/G/1-type processes concerns com-
putational approaches based on numerical analysis and nu-
merical methods. The best-known algorithms of this ap-
proach consist of variants of cyclic reduction (CR), originally
proposed by Buzbee, Golub and Nielsen in 1970. Motivated
by queueing-theoretic problems, Bini and Meini developed
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various extensions of CR for solving M/G/1-type processes [1].
This CR-based computational approach represents the most
efficient solutions for computing the stationary distribution
π of M/G/1-type processes on classical digital computers.

Even with the computational benefits of CR, the time
required to compute the stationary distribution can still be
prohibitive for large stochastic performance models. Quan-
tum computers offer the potential of achieving significant
advantages for certain computational problems, with the pos-
sibility of delivering polynomial-to-exponential speedups over
the best solutions on classical computers. However, despite
this great potential, several important quantum algorithms
have been shown to provide modest or no benefits over the
best classical algorithms [2]. Moreover, to our knowledge,
there are no quantum algorithms for computing the station-
ary distribution of M/G/1-type processes and no quantum
algorithms that realize the potential significant speedup.

Herein, with a primary mathematical focus, we derive the
first quantum algorithms for computing the stationary distri-
bution of M/G/1-type processes, and we derive a mathemat-
ical analysis of the computational properties of our quantum
algorithms and related theoretical results. This includes
establishing the potential for a polynomial-to-exponential
speedup over the best classical algorithms in various settings
of both theoretical and practical importance. Due to space
restrictions, we refer the reader to [2] for many of the techni-
cal details on M/G/1-type processes, quantum computing,
derivations of CR methods and related theoretical results,
proofs of our theoretical results, and additional references.

2. ALGORITHMIC SOLUTIONS
Classical CR Algorithms. Define θ(ℓ) := min{n ≥

0 : X(n) ∈ L(ℓ)} and G
(i)
jk := P[θ(ℓ) < ∞, X(θ(ℓ)) =

(ℓ, k) |X(0) = (i + ℓ, j)], whose jk-th element denotes the
probability that, starting from state (i+ ℓ, j) ∈ L(i+ ℓ) at
time 0, the process enters L(ℓ) for the first time in finite
time with (ℓ, k) being the first state visited in L(ℓ). The so-
lution of the stationary distribution π is then determined in
terms of the matrix Gmin, which is the minimal nonnegative
solution of the matrix equation X =

∑∞
i=−1 AiX

i+1.
The classical CR approach basically consists of rewrit-

ing the equation X =
∑∞

i=−1 AiX
i+1 in the matrix form

H[G(1) G(2) G(3) · · · ]⊤ = b := [A−1 00 · · · ]⊤, and applying
variants of CR to solve this rewritten matrix form. A single
CR iteration consists of applying an even-odd permutation to
the block rows and block columns of the matrix H followed
by one iteration of block Gaussian elimination. This trans-
formation maintains the unchanged structure of the system,



and thus CR is applied recursively which yields a sequence
of block Hessenberg, block Toeplitz-like infinite systems that
provably converges quadratically to a limit system whose
solution can be explicitly evaluated. The matrix of the infi-
nite system at each iteration is fully characterized by its first
and second block rows whose respective block entries define
two formal matrix power series with an explicit functional
relation that expresses in functional form the CR iteration.

The computational complexity of the classical CR algo-
rithm is given by O(M3dCmax+M

2dCmax log d
C
max), where dCmax

is the maximum numerical degree of the matrix power series
generated by CR and M is the order of the block matrices
of P. This computational complexity can be prohibitive for
large values of M and dmax. We next present our quantum
algorithms to address the computational bottlenecks of the
classical CR algorithm on digital computers.

Quantum CR Algorithms. Focusing on the primary
computational bottlenecks of classical CR, we note that the
CR iterations involve Toeplitz linear systems and Toeplitz
matrix products. Given a Toeplitz matrix T[N ] with entries
tij = ti−j , the entries can be viewed as Fourier coefficients of
a certain 2π-periodic strictly positive continuous real-valued
function f defined on [0, 2π] as tk = 1

2π

∫ 2π

0
f(λ)e−ikλdλ,

k ∈ {0,±1, . . . ,±(n− 1)}. With this generating function f
of the sequence T[N ], we can construct a sequence of associ-
ated circulant matrices C[N ] that converge super linearly to
these Toeplitz matrices T[N ] as N increases. In particular, we
define a circulant matrix C[N ] with top row (c0, c1, . . . , cN−1)

where ck = 1
N

∑N−1
j=0 f(2πj/N)e2πijk/N . The eigenvalues of

C[N ] are simply f(2πj/N), j ∈ {0, 1, . . . , N − 1}, and the
corresponding eigenvectors are the columns of the Fourier
matrix Φ. Our quantum approach therefore consists of ef-
ficient matrix operations on the matrices C[N ], for which
we have the inverse (C[N ])−1 = Φ†Λ−1Φ, where Λ−1 is a
diagonal matrix with eigenvalues 1/f(2πj/N).

Our quantum CR Alg. Q.1 executes Alg. Q.2 on a quan-
tum computer with Toeplitz matrix inputs T1 = (I−U

(n)
11 ),

T2 = −U
(n)
21 having generating functions f1, f2. We en-

code the N columns of T3 = U
(n)
12 as an initial state |ψ0⟩

and operate on each column independently and in quantum
parallel. Then, we approximately compute T2T

−1
1 |ψ0⟩ =

Φ†Λ(f2)Λ
−1(f1)Φ |ψ0⟩, where Λ(f1), Λ(f2) are diagonal ma-

trices corresponding to the eigenvalues of T1, T2. With
oracle access to f1, f2 by exploiting appropriate oracle
quantum circuit methods, and given the Fourier coefficients
{tk}, we compute these generating functions using efficient
quantum circuits with the corresponding Fourier expan-
sions. Next, we apply QFT to the initial state to obtain
|ψ′

0⟩ = Φ |ψ0⟩. To encode the eigenvalues of T1, we exploit
oracle access to the values of f1 to map |ψ′

0⟩ =
∑N

j=0 bj |j⟩ →∑N
j=0 bj |j⟩ |f1(2πj/N)⟩. Then, to invert the eigenvalues, we

add a qubit, using controlled-rotations to invert the phases
(eigenvalues), and use uncompute to obtain an approxima-
tion to the state |ψ1⟩ = Λ−1(f1) |ψ′

0⟩. We now encode the
eigenvalues of T2 exploiting the oracle access to the values of
f2 and map |ψ′

1⟩ =
∑N

j=0 b̃j |j⟩ →
∑N

j=0 b̃j |j⟩ |f2(2πj/N)⟩,
and then apply iQFT to obtain a state proportional to
|ψ2⟩ = Φ†Λ(f2)Λ

−1(f1)Φ |ψ0⟩. Upon computing the state
|ψ∗⟩, Alg. Q.1 checks the solution accuracy by computing
∥1− (A−1+ Ẑ0)1∥∞ on the quantum computer. Let |a−1⟩ =
vec(A−1) and mask(|ψ∗⟩) = vec(Ẑ0), where mask(|ψ∗⟩) con-

siders only the amplitudes corresponding to Ẑ0 in |ψ∗⟩.
We load the columns of A−1 to form the state |a−1z0⟩ =

|a−1⟩+mask(|ψ∗⟩), and compute ∥1− (A−1 + Ẑ0)1∥∞ from
|a−1z0⟩. If ∥1 − (A−1 + Ẑ0)1∥∞ > ϵ, we repeat the inner
loop; else, we output J = (I − Ẑ0)

−1A−1, again loading
|a−1⟩ = vec(A−1) and using the above Toeplitz solution
approach to form the state |̃j⟩ = vec(J).

Algorithm Q.1 Quantum CR for M/G/1-type Processes
Input: Positive integer d, M × M block matrices Ai, i ∈
{−1, 0, 1, . . . , d− 1}, defining the block Toeplitz, block Hessen-
berg matrix H, and error tolerance ϵ > 0.
Output: An approximation J to the matrix Gmin.
1. Set n = 0, consider quantum circuits for matrices A

(0)
−1 =

A−1, A
(0)
0 = A0, . . ., A

(0)
d−1 = Ad−1, and Â

(0)
0 = I − A0,

Â
(0)
1 = −A1, . . ., Â

(0)
d−1 = −Ad−1.

2. Call Alg. Q.2 with inputs T1 = (I − U
(n)
11 ),T2 =

−U
(n)
21 ,T3 = U

(n)
12 and T4 = (I − U

(n)
22 ) to obtain a quan-

tum output state |ψ∗⟩ which is a vectorization of matrices
Z−1,Z0, . . . ,Zd′−2, Ẑ0, Ẑ1, . . . , Ẑd′−1.
3. Let |a−1⟩ = vec(A−1) and mask(|ψ∗⟩) = vec(Ẑ0). Load
columns of A−1 s.t. we form the state |a−1z0⟩ = |a−1⟩ +

mask(|ψ∗⟩). Compute ∥1 − (A−1 + Ẑ0)1∥∞ from |a−1z0⟩.
If ∥1 − (A−1 + Ẑ0)1∥∞ > ϵ, set n = n + 1, set A

(n)
i = Zi,

i ∈ {−1, . . . , d′ − 2}, set Â
(n)
i = Ẑi, i ∈ {0, . . . , d′ − 1}, and

repeat Steps 2 and 3.
4. Load |a−1⟩ = vec(A−1) and use the Toeplitz solution
approach in Alg. Q.2 to form the state |j⟩ = vec(J) with
J = (I− Ẑ0)−1A−1.

Mathematical Analysis. After n iterations of our quan-
tum CR, we have the general system in the matrix form
H(n)x

(n)
− = b with x

(n)
− = [GminG

2n+1
min G2·2n+1

min G3·2n+1
min · · · ]⊤.

For each iteration n, consider the computation of the block
Hessenberg matrix H(n) w.r.t. the matrix power series φ(n)(z)

:=
∑∞

i=−1 z
i+1A

(n)
i , φ̂(n)(z) :=

∑∞
i=0 z

iÂ
(n)
i defining the

first two block rows of H(n), whose computed approximations
are ϑ(n)(z), ϑ̂(n)(z) with corresponding approximation errors
R(n)(z) := ϑ(n)(z) − φ(n)(z), R̂(n)(z) := ϑ̂(n)(z) − φ̂(n)(z).
Let V(n)(z) = φ

(n)
even(z)(I − φ

(n)
odd(z))

−1, W(n)(z) = (I −
φ

(n)
odd(z))

−1φ
(n)
even(z), Ŵ(n)(z) = (I− φ

(n)
odd(z))

−1φ̂
(n)
even(z); let

T denote the quantum CR n + 1 iteration transformation
(φ(n+1)(z), φ̂(n+1)(z)) = T (φ(n)(z), φ̂(n)(z)); let .

= and ≤̇ re-
spectively denote equality and inequality up to higher-order
error terms; and let ∥S(z)∥∗ = ∥

∑∞
i=0 |Si|∥∞ denote the max

norm where S(z) =
∑∞

i=0 z
iSi is a matrix power series in the

Wiener algebra W. We derive in [2] a mathematical analysis
of the computational errors and computational complexity of
our quantum CR. Here we summarize the theoretical results
of our analysis in the following sequence of theorems, starting
with a first-order analysis of the approximation errors.

Theorem 1. We have the first-order equalities R(n+1)(z)
.
=

zR
(n)
odd(z)+R

(n)
even(z)W

(n)(z)+V(n)(z)R
(n)
even(z)+V(n)(z) ×

R
(n)
odd(z)W

(n)(z) and R̂(n+1)(z)
.
= R̂

(n)
odd(z)+R

(n)
even(z)Ŵ

(n)(z)+

V(n)(z)R̂
(n)
even(z) +V(n)(z)R

(n)
odd(z)Ŵ

(n)(z), and the corre-
sponding first-order upper bounds ∥R(n+1)(z)∥∗≤̇2∥R(n)(z)∥∗×
(1+∥V(n)(1)∥∞) and ∥R̂(n+1)(z)∥∗≤̇∥R̂(n)(z)∥∗(1+∥V(n)(1)∥∞)

+∥R(n)(z)∥∗(1 + ∥V(n)(1)∥∞).

Exploiting Theorem 1, we establish an upper bound on the



Algorithm Q.2 Single Iteration n of Quantum CR
Input: Four N ×N Toeplitz matrices T1,T2,T3, T4.
Output: A quantum state |ψ∗⟩ ≈ vec(T2T

−1
1 T3 +T4).

1. Prepare initial state |ψ0⟩ which is vectorization of T3.
/* Compute the Toeplitz matrix inverse T−1

1 T3 as |ψ1⟩ =
(I⊗T−1

1 ) |ψ0⟩, assuming oracle access to the generating function
f1 of the Toeplitz matrix T1 */
2. Compute |ψ′

0⟩ = QFT (|ψ0⟩).
3. Suppose |ψ′

0⟩ =
∑N−1

j=0 bj |j⟩. Then, using the oracle for
f1, for each column of T3, compute in parallel on the parallel
quantum processors

∑N−1
j=0 bj |j⟩ |f1(2πj/N)⟩.

4. Add a qubit and perform a
controlled-rotation on |f1(2πj/N)⟩ to obtain∑N−1

j=0 bj |j⟩ |f1(2πj/N)⟩
(√

1− m2

f2
1 (2πj/N)

|0⟩+ m
f1(2πj/N)

|1⟩
)

,

where m is a constant s.t. m ≤ minj |λj | and λj are the
eigenvalues of C(f1).
5. Uncompute the second qubit and use ampli-
tude amplification on the last register to obtain |1⟩,
and thus with high probability we attain |ψ1⟩ =√

1∑
j m2|b2j |/|f1(2πj/N)|2

∑N−1
j=0 bj

m
f1(2πj/N)

|j⟩, which is pro-

portional to Λ−1 |ψ′
0⟩ =

∑N−1
j=0

bj
f1(2πj/N)

|j⟩ up to normaliza-
tion.

/* Compute the Toeplitz matrix-vector product |ψ2⟩ =
(I⊗T2) |ψ1⟩, assuming oracle access to the generating function
f2 of the Toeplitz matrix T2 */
6. Suppose |ψ′

1⟩ =
∑N−1

j=0 b̃j |j⟩. Then, using the oracle for f2,
for each column of T3, compute in parallel on the quantum
processors |ψ′

2⟩ =
∑N−1

j=0 b̃j |j⟩ |f2(2πj/N)⟩.
7. Compute |ψ2⟩ = iQFT (|ψ′

2⟩).
8. Load vectorization of T4 as a quantum state |ψ3⟩ s.t. the
amplitudes are added to the current state |ψ2⟩, i.e., prepare
|ψ∗⟩ = |ψ2⟩+ |ψ3⟩.

global errors of our quantum CR Alg. Q.1 up to iteration n.

Theorem 2. Suppose ∥E(n)
L (z)∥∗ ≤ υ and ∥Ê(n)

L (z)∥∗ ≤ υ

for some υ > 0, and 2(1 + ∥V(n)(1)∥∗) = γn ≤ γ for some
γ > 1. Then, for the quantum CR Alg. Q.1, we have upper
bounds on the error ∥E(n+1)(z)∥∗≤̇υ(γn+1 − 1)/(γ − 1) and
∥Ê(n+1)(z)∥∗≤̇υ(γn+1 − 1)/(γ − 1).

The above error analysis can be provably improved by
extending Alg. Q.1 w.r.t. a shifting technique that removes
the root λ = 1 of the function χ(z) = zI−φ(z). Consider the
function χ̃(z) = χ(z)(I− z−1Q)−1 where Q = 1u⊤ for any
vector u s.t. u⊤1 = 1 and χ̃(z) has the same roots as χ(z)
except for z = 1 replaced by the root z = 0. The shifting
technique then applies CR to χ̃(z) w.r.t. the corresponding

sequences of matrix power series χ̃(n)(z), ̂̃χ(n)
(z) in place of

χ(n)(z), χ̂(n)(z). Our resulting quantum CR Alg. Q.3 calls
Alg. Q.2 exactly as Alg. Q.1 but with inputs χ̃(n)(z) and̂̃χ(n)

(z) [2]. Exploiting Theorem 1, we establish an improved
upper bound on the global errors of Alg. Q.3 up to iteration n.

Theorem 3. Suppose ∥E(n)
L (z)∥∗ ≤ υ and ∥Ê(n)

L (z)∥∗ ≤ υ
for some υ > 0. Then, for the quantum CR Alg. Q.3 (see [2])
and for γn = (1 + θσ2n)2, we have ∥E(n+1)(z)∥∗≤̇υ(1 +

ne2θσ
2/(1−σ2)) and ∥Ê(n+1)(z)∥∗≤̇υ(1 + ne2θσ

2/(1−σ2)).

Finally, we derive a mathematical analysis of the compu-
tational complexity of our quantum CR Algs. Q.1 and Q.3,
which includes the time complexity of Alg. Q.2 called by

both to handle each CR iteration. Let τoracle be the time
complexity to use the oracle for the generating function f
and prepare the state |f(2πj/N)⟩, and let τreadout be the
time complexity to read out the results from the quantum
computer. Let µ = f1,max/f1,min for the generating function
f1 of Alg. Q.2, let dQmax and dCmax respectively be the maxi-
mum numerical degrees of the matrix power series generated
by our quantum CR and the corresponding classical CR, and
let NQ = dQmax ·M . We then establish the following result.

Theorem 4. The overall computational complexity of the
quantum CR Alg. Q.1 and Alg. Q.3 is given by O(µ(τload +
log2NQ + τoracle) + τreadout) with dQmax = O(dCmax). Suppos-
ing µ, τoracle to be O(poly logNQ), we then have that the com-
putational complexity O(µ(log2NQ+τoracle)) of Alg. Q.1 and
Alg. Q.3 represents an exponential speedup of the computa-
tion phase over the computational complexity of O(M3dCmax+
M2dCmax log d

C
max) for the corresponding classical CR algo-

rithm. Further supposing τload, τreadout to be O(poly logNQ)
or subexponential in (logNQ), we then additionally have that
the overall computational complexity O(µ(τload + log2NQ +
τoracle) + τreadout) of Alg. Q.1 and Alg. Q.3 represents a
polynomial-to-exponential speedup over the computational
complexity for the corresponding classical CR algorithm.

Remark 5. Given the definition of µ = f1,max/f1,min for
the generating function f1 associated with Alg. Q.2 and given
the properties of the Toeplitz matrix T1 (e.g., nonnegative,
stochastic) together with typical ratios f1,max/f1,min found in
practice for M/G/1-type processes, we typically have µ to be
O(poly logNQ) for sufficiently large NQ. In particular, for
large NQ, we have µ ≈ κ where κ is the condition number of
T1. By exploiting appropriate oracle quantum circuit methods
(see [2]) together with the properties of the Toeplitz matrices
T1,T2,T3 input to Alg. Q.2 and the corresponding generating
functions f1, f2, we can have τoracle to be O(poly logNQ)
for sufficiently large NQ. In such cases of theoretical and
practical importance, Theorem 4 establishes that our quantum
algorithms provide the potential for an exponential speedup
of the computation phase in the decision-space on a quantum
computer over that of the best-known classical algorithms,
which is our primary focus from a mathematical perspective.

Similarly, by exploiting appropriate block encoding quan-
tum circuit methods (see [2]) together with properties of the
Toeplitz matrices T1,T2,T3,T4 input to Alg. Q.2 to sup-
port efficient data loading, we can additionally have τload to
be O(poly logNQ) or subexponential in (logNQ) for suffi-
ciently large NQ; and by exploiting properties of the result
matrix Gmin in cases where such matrices are sufficiently
sparse to support efficient readout, we can additionally have
τreadout to be O(poly logNQ) or subexponential in (logNQ)
for sufficiently large NQ. In such cases of theoretical and
practical importance, Theorem 4 establishes that our quantum
algorithms provide the potential for an overall polynomial-to-
exponential speedup over the best-known classical algorithms.
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