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ABSTRACT
In the realm of stochastic control, particularly in the fields

of economics and engineering, Markov Decision Processes
(MDP’s) are employed to represent various processes rang-
ing from asset management to transportation logistics. Upon
closer examination these constrained MDP’s often exhibit
specific causal structures concerning the dynamics of tran-
sitions and rewards. Thus, leveraging this structure can
facilitate computational simplifications for determining the
optimal policy. This study introduces a framework, which
we denote as SD-MDP, in which we disentangle the causal
structure of state transition and reward function dynam-
ics. Through this method, we are able to establish theoreti-
cal guarantees on improvements in computational efficiency
compared to standard MDP solver (such as linear program-
ming). We further derive error bounds on the optimal value
approximation via Monte Carlo simulation for this family of
stochastic control problems.

1. INTRODUCTION
Certain stochastic decision processes for optimal control,

namely those found in domains of robotics, and logistics, op-
erate with dynamics and do not always require a full MDP
formulation. Techniques such as policy and value iteration,
deep reinforcement learning, etc., can be used for computing
approximate optimal solutions. Nevertheless, disentangling
and applying the causal structure of an MDP can improve
the computational complexity of MDP solvers via seperabil-
ity of the search space.

Traditionally, resource allocation problems were tackled
through multi-stage stochastic programming or approximat-
ing them as MDPs [4]. Yet, these methods struggle with
seamless integration with machine learning. To address this
gap, we introduce SD-MDP (Section 2), offering a flexible
modelling approach for various resource allocation problems
and a route to derive theoretical guarantees.

We introduce a construct, termed the resource-utility ex-
change model, akin to energy conservation principles in physics.
It allows for generic modelling of MDPs via simulation. This
construct also facilitates theoretical guarantees on value func-
tion estimates, especially when integrating Monte Carlo ap-
proximations with MDP solvers utilizing online learning.

2. THE SD-MDP FRAMEWORK
From the perspective of causal reinforcement learning [3],

the SD-MDP effectively partitions the state transition me-
chanics via the causal relation of the intervening action.
This allows the state transition to be modelled separately,
and independent of the reward dynamics. The transition
separability characteristic of the SD-MDP isolates the causal

effect of actions at on the state transition xt
η → xt+1

η , as
illustrated in Fig. 1.
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Figure 1: A display of the SD-MDP Markov dynamics.

The SD-MDP integrates both deterministic (xd) and envi-
ronmentally driven (xη) state components, the combination
of which defines an MDP state, x = [xη,xd]

T . At face value,
this model is similar to the restless bandit problem [1], aim-
ing to maximize cumulative expected rewards within a finite
time frame for environmentally changing state transitions.
Unlike a classical restless bandit, due to constraints on xd,
reward outcomes must be planned over the complete time
horizon T , rather than maximizing at each given opportu-
nity, under perfect information or otherwise.
SD-MDP Definition: Formally, the SD-MDP is represented

as (X ,A,R, T ,x1), where X denotes the state space. A
denotes the action space, and is of a fixed dimension. R ∈ R
denotes the reward space. T is the transition function for
x ∈ X , and x1 is the initial state.

In particular, we divvy up the state vector representa-
tion into a deterministic partition, xd, and an independent
stochastic partition, xη, both exhibiting different properties
when subject to an intervention at. θ denotes the parame-
ters which govern the dynamics of a specific SD-MDP.

P (xt+1
d |at,xt) ∈ {0, 1} (1)

P (xt+1
η |at,xt) = Pθ(x

t+1
η |xt

η) (2)

P (xt+1|at,xt) = P (xt+1
d |at,xt)Pθ(x

t+1
η |xt

η) (3)

2.1 Dynamics of the SD-MDP
To align the formulation with a concrete application do-

main and justify the partitioning the MDP into stochastic-
deterministic partitions (SD-MDP), we model a specific MDP
using the resource-utility exchange principle, providing ab-
straction for sequential decision making across various do-
mains. State transitions are driven by the environment, de-
noted xη, while rewards depend on actions and the entire



state space, denoted µθ(a
t,xt). The SD-MDP partitions state

transitions based on causal relations of actions, allowing sep-
arate modelling of transition and reward dynamics.

Applications: Concrete examples of the SD-MDP frame-
work include an agent liquidating portfolio of assets over
discrete time periods while being subject to restrictions on
the amount of assets exercisable. Another example is the re-
fuelling ofa maritime liner at different ports-of-calls, subject
to stochastic fuel costs. In both scenarios, the agent is sub-
ject to some form of capacity and action constraint(s), while
converting resources for utility over a finite time horizon to
maximize their respective cumulative utility.

(D1): Positive Action Space: In the first assumption,
we impose the constraint of a strictly element-wise positive
action space, wherein each component of the action vector
is greater than 0, a > 0. Additionally, the capacity space
is also subject to a similar constraint, ensuring each compo-
nent of the capacity vector xd is non-negative, i.e., xd ≥ 0.
This constraint is necessary to represent a multi-dimensional
capacity quantity that is consumed over discrete time incre-
ments, as depicted in Fig. 2.
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Figure 2: A 2D display of resource-utility exchange
subject to the dynamics of the SD-MDP.

(D2): General Linear Reward Dynamics: The SD-MDP
obeys a reward function of a general linear form. Refer-
encing Fig. 1, state variable xt

d, and intervention variable
at
d are deterministic. Similarly, we also define the causal

effect of the contemporaneous state-action space on the re-
ward. Together with the stochastic partition xt

η, it invokes
a causal relationship for the outcome at time t, µθ(a

t,xt).
The reward function is defined as a deterministic function
of at and xt, denoted as µθ(a

t,xt).

Let µ(·) : R|Xη| × R|A| 7→ R denote a standard map that
yields a single reward value in R when provided with in-
puts a ∈ A and xt

η ∈ Xη, subject constraints on the system

at time t. f(·) : RD → RD is a coordinate-wise separable
kernel functions composed of a series of smooth positively
monotone Lipschitz functions, governing the dimension-wise
non-linear scaling corresponding to xη. Next, we employ a
linear transformation on f(xt

η), with a positive semi-definite
matrix ϕ. This homogeneous scaling map allows for both
enlargement and shrinking of the vector along the positive
dimensions. The reward function results from a inner prod-
uct between the transformed ϕ f(xt

η) and at, as expressed
in in Equation (4).

µθ(a
t,xt) = ⟨ϕ ◦ f(xt

η), a
t⟩ (4)

(D3): Linear Incremental Action Dynamics: We de-
fine a linear transformation matrix ϕ′, which provides and
anti-parallel transform in comparison to ϕ. Similarily we
introduce function g(·) : RD → RD, which similar to f(·),
is also a coordinate-wise separable function composed of a
series of smooth positively monotone Lipschitz kernel func-
tions. To model the expansion and contraction of the ca-
pacity xd, we impose the linear transition function acting
on xd in Eq. (5).

∆a(t) ≤ ||xt+1
d − xt

d||p = ||∆d(t)︸ ︷︷ ︸
System

+ϕ′ g(at)︸ ︷︷ ︸
Agent

||p ≤ ∆̄a(t) (5)

Where ∆d(t) is a natural discrete change on xt
d as deter-

ministically determined by the system, and ϕ′g(at) is the
contribution to the expansion or contraction of xt

d based
on the agent’s action taken at at. We impose a constraint
on the magnitude of capacity change per time interval via
Eq. (9), where constraints ∆a(t) and ∆a(t) are given by the
system.

(D4): Capacity Objective: We provide a constraint on
the trajectory of actions, and this constraint is expressed
in the form of a path constraint (accumulation). This path
constraint on the action space restricts the path of the action
sequence the agent takes. As defined, the accumulation of
resources ϕ′g(a) should meet some maximum and minimum
goals, as expressed in Eq. (6).

A ≤
T∑

t=1

||ϕ′ g(at)||p ≤ Ā (6)

3. OPTIMAL POLICY STRUCTURE
Let (a)t ≡ (ai=1,ai=2,ai=3, . . . ,ai=t) denote a sequence

of a from 1 to t. Further, let us denote the operators ℵt[(a)t]

and ℵt
[(a)t].

ℵt[(a)t] ≡ (T − t+ 1)∆a(t) +

t−1∑
i=1

||ϕ′g(ai)||p − Ā (7)

ℵt
[(a)t] ≡ (T − t+ 1)∆̄a(t) +

t−1∑
i=1

||ϕ′g(ai)||p −A (8)

Intuitively, ℵt
[(a)t] and ℵt[(a)t] represent the maximum

and minimum allowable consumption under the path con-
straint in Eq. (6). Correspondingly, ∆a(t) and ∆̄a(t) consti-
tute the minimum and maximum incremental capacity con-
straints specified by the system. Moving forward let, A(t)
denote the action set at time t, given the constraints from
equations Eq. (5) and (6), such that the expression a ∈ A(t)
encapsulates the constraints pertaining to the SD-MDP dy-
namics.

A(t) ≡
{
a : ∥a(t)∥ ≤ ||ϕ′g(at)||p ≤ ∥a(t)∥

}
(9)

∥a(t)∥ = max
{
ℵt[(a)t], ∆a(t)

}
(10)

∥a(t)∥ = min
{
ℵt

[(a)t], ||xt
d||p, ∆̄a(t)

}
(11)



||xt
d||p forms a constraint on the capacity from the deter-

minsitic component of the SD-MDP. Along with ℵt[(a)t] and

ℵt
[(a)t], they together form a bound on the admissible ac-

tion space, denoted as A(t). We denote {a+} and {a−} as
the following,

{a+} = argmax
a∈A(t)

||a||p, {a−} = argmin
a∈A(t)

||ϕ′g(at)||p (12)

Given A(t), at any time t, there exists two sets {a+}, and
{a−} which either maximizes allowable reward, or maxi-
mally reduces consumption of resource xd. In Lemma 3.1,
we show that the optimal policy consists of a action, repre-
sented as a vector, corresponding to one of two sets {a+} or
{a−}.

Let E[τs] ≡ {E[xt
η],E[xt+1

η ],E[xt+2
η ], . . . ,E[xT

η ]}. We de-
fine the Topk(E[τs]) for a series of multidimensional vectors
be defined as,

Topk(E[τs]) = (E[xi=1
η ],E[xi=2

η ], . . . ,E[xi=k
η ]) (13)

Such that,

ϕ f(E[xi=1
η ]) ⪰ ϕ ◦ f(E[xi=2

η ]) · · · ⪰ ϕ f(E[xi=k
η ]) (14)

To note, the series returned by Topk(E[τs]) could have
a smaller cardinality than E[τs] due to truncation. We use
/Topk(E[τs]) to the denote the set of elements not in Topk(E[τs])
but in E[τs]. Where |Topk(E[τs])|+ |/Topk(E[τs])| = |E[τs]|.

Lemma 3.1. Bounded Action Space for the SD-MDP:
Under the SD-MDP framework, for any action taken in the
the finite time horizon, optimal policy lines to the union of
2 subspaces, that is a∗ ⊂ {a+}t ∪ {a−}t ⊂ A(t) ⊆ A.

Sketch of Proof: First we demonstrate the separability
of E[τs] with respect to any deterministic sequence of ac-
tions. The solution therefore involves the finding the max-
imizing E[xt

η] ∈ E[τs] for each t ∈ (1 . . . T ). Under incre-
mental dynamics, ||a|| ≤ ∆̄a(t), only limited resources can
be dedicated to maxmizing each E[τs] via the inner prod-
uct from Eq. (4). We show that when we majorize over
E[ϕf(xt

η)], ∀E[xt
η] ∈ E[τs], the optimal solution to the se-

quence (a∗) is an order preserving union of two sequences,
comprising of a+ ∈ {a+}t and a norm minimizing vector
a− ∈ {a−}t which are independently computed.

Lemma 3.2. Solving for Optimal Value via Top K
Allocation: Under the SD-MDP framework, the optimal value
can be obtained by solving the dual problem, which involves
the optimization of the value of k in Topk(E[τs]) over k ∈
{1, . . . , T} possibilities.

Sketch of Proof: We show that when we majorize over
E[τs], to produce an ordered set of sequences according to
Eq. (13) we simply select the top k vectors in this ordered
list which satisfies the norm maximization constraints for
the resource allocation. For the rest of the E[τs] we allocate
minimum resources within the constraints. Via an argument
based on an extension of the Hardy-Littlewold-Polya Theo-
rem [2], the solution involves simply finding the value of k
which maximizes the value function expressed in Eq. (15),
subject to constraints SD-MDP dynamics (Section 2.1).

Vk(x
t) =

∑
k

ϕ ◦ f ⊙ Topk(E[τs])⊙ a+[E[xη]]

+
∑
T−k

ϕ ◦ f ⊙ /Topk(E[τs])⊙ a−[E[xη]] (15)

Corollary 3.1. Polynomial Time Solution: There
exists a in solution in polynomial time for any well-defined
SD-MDP.

Sketch of Proof: As the constraints are linear, the en-
tire system can be formulated and solved as a block form
sparse linear program with T constraints, and therefore a
polynomial time solution exists.

Theorem 1. Upper bound on the Monte Carlo Value
Estimation for the SD-MDP: For the SD-MDP, the optimal
policy, where the value function is upper bounded by |V̂N −
V ∗(x)| ≤ O((δ

√
N)−1), with probability 1− δ. Where V̂N is

the Monte Carlo simulation estimate of the value function
under N iterations.

Sketch of Proof: Any naturally evolving time series has
an expected outcome which can be computed E[τs], and
thus the problem reduces to an allocation problem which can
be solved using the dual formulation, in solving for Topk(·)
in Lemma 3.2. Via Hoeffding’s inequality, we can upper
bound the approximation error from Monte Carlo sampling
by treating each outcome as a random sample.

4. REMARKS
In contrast to linear programming (LP), aimed at achiev-

ing anticipative solutions, this streamlined approach enables
a reduction in computational complexity, should the appro-
priate conditions arise when the SD-MDP can be applied. This
paradigm shift entails the vector majorization over stochas-
tic outcomes E[τs] and allocation of a+ and a−, which can
reduce the complexity from an LP-based polynomial time
solution, to that of a sorting-based logarithmic time solu-
tion. The exact computational speed-up may be problem
specific, and left for future investigation. This methodol-
ogy can also seamlessly integrate with simulation-based opti-
mization and learning algorithms, particularly those leverag-
ing Monte Carlo simulation techniques such as Monte Carlo
Tree Search or Thompson Sampling. This technical note
aims disseminate exploratory ideas to disseminate informa-
tion, with plans for detailed exposition in future work.
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