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ABSTRACT
In this study, we investigate the performance of multi-armed
bandit algorithms in environments characterized by heavy-
tailed and non-stationary reward distributions, a setting
that deviates from the conventional risk-neutral and sub-
Gaussian assumptions. We specifically focus on extending
Upper-Confidence Bound (UCB)-based policies to accom-
modate heavy-tailed reward distributions while preserving
their performance guarantees in non-stationary contexts by
change-point detection. We provide a rigorous analysis of
the proposed algorithm by establishing a regret bound in
the style of

√
T + log T in the time horizon T , in stochastic

cases. Our results contribute to the understanding of multi-
armed bandits in more complex and realistic environments,
with potential implications for various applications in ma-
chine learning and decision-making under uncertainty.

1. INTRODUCTION
Decision-making in uncertain environments is a crucial

challenge in fields like engineering, economics, social science,
and ecology. Two significant obstacles in these problems are
nonstationarity, where the environment changes over time,
and heavy-tailedness, which involves extreme events that
are rare but impactful. An effective strategy in such en-
vironments needs to balance exploration, or gathering new
information, and exploitation, or using existing knowledge
to make optimal decisions.

The Multi-armed Bandit (MAB) framework introduced
by [8] is a well-known approach for sequential decision-making
that navigates the exploration-exploitation trade-off. It is
described as follows: an agent facing K actions (or bandit
arms) selects one arm at every time step. With each arm
i ∈ {1, · · · ,K} there is an associated probability distribu-
tion νi with finite mean µi. These distributions are unknown
to the agent. At each round t = 1, · · · , T , the agent chooses
an arm It, and observes a reward drawn from νIt indepen-
dently from the past given It. The goal of the agent is to
minimize the regret

RT = T max
i=1,··· ,K

µi −
T∑

t=1

EνIt .

The simplicity and versatility of the MAB framework have
led to its application in various fields. For example, MAB
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is used in online advertising [10], recommendation systems
[12], network routing [5], portfolio optimization [6], and so
on.

However, the traditional assumptions of stationarity and
sub-Gaussian reward distributions in classic MAB problems
are often too restrictive for real-world situations, where envi-
ronments can change, and rewards can have heavy tails due
to extreme events. In this work, we extend the MAB frame-
work to address both nonstationarity and heavy-tailedness,
aiming to create more robust and adaptable algorithms for
sequential decision-making in complex environments. Non-
stationarity and heavy-tailedness are challenging but neces-
sary since. Even though the two problems are explored since
a long time ago, little work has been seen fully combining
the two challenges together except for [11, 2]. The former
relies on the knowledge of changing frequency and the bud-
get while the latter majorly focused on the pseudo-regret
according to some kind of risk.

To the best of our knowledge, there has been no prior work
addressing the topic of regret minimization on the heavy-
tailed non-stationary bandits. With this in mind, we would
like to introduce our main contributions, which are as fol-
lows:

• We design a novel regret minimization algorithm in the
novel heavy-tailed piecewise-stationary bandit setting,
with common assumptions. The algorithm is based
on the change-point detection, and repeated restarting
the optimal bandit algorithm.

• We prove our algorithm achieves a regret ofO(
√
KY T+

σ
∑

i ̸=i∗ ∆
−1
i log T ), Y being the number of change

points. Its O(
√
T ) dependency on time horizon T

matches the previous work where it is sub-Gaussian
but non-stationary, as shown in Table 1. The other
item in the regret bound shows a exponential relation,
that is, O(σ), in the heavy-tailedness parameters σ,
showing that the heavier the tails are, the larger would
the regret grow. In the instance-independent meaning,
the algorithm achieves regret of O(

√
KT (

√
σ log T +√

Y )).

Regret Stationary Non-stationary

Sub-Gaussain log T [1]
√
T [4]

Heavy-tailed log T -style [3]
√
T log T

Table 1: Best regret bound achieved by different
bandits under different stochastic settings



2. PRELIMINARIES
We assume that there exists a unique optimal arm. It is a

common assumption in MAB and RL literature. Denote the
optimal arm in hindsight to be the i∗-th arm, and define ∆i

for other arms to be the suboptimally gap between it and
the optimal arm, that is,

∆i = µi − µi∗ .

2.1 Piecewise stationary
To model the non-stationarity, we define the piecewise-

stationary reward process similar to [13]. It changes its
distribution arbitrarily and at arbitrary rounds, but other-
wise remains stationary. Let rt represent the reward vector
at time t, with the i-th element rt(i) representing the re-
ward associated with the i-th arm. The reward sequence
r1, r2, · · · is an independent sequence of random variables
that undergoes abrupt changes in distribution at unknown
rounds y1, y2, · · · ∈ Y called change-points. Let ν(t) =
{ν1(t), · · · , νK(t)} denote the distribution of rt. Hence, ryj ,
ryj+1, · · · , ryj+1−1 have common distribution ν(yj). And we
can rewrite the number of the piecewise-stationary regimes
Y divided by the change points as follows:

Y = 1 +

T−1∑
t=1

1{νi(t) ̸= νi(t+ 1) for some i ∈ {1, · · · ,K}}.

Throughout the paper we also make the following non-
parametric assumption on the distributions families.

Assumption 1. We assume that for all t ∈ {1, · · · , T}
and for all i ∈ {1, · · · ,K}:

Er∼νi(t)∥r − µi(t)∥2 ≤ σ,

for some known σ <∞.

This assumption encompass a wide range of families such
as heavy-tailed distributions that do not have finite higher
moments.

3. ALGORITHMS
Our framework consists of two main components: an opti-

mal bandit algorithm for heavy-tailed distribution, and the
restarted Bayesian online change-point detector. At each
round t and based on the past observations, the bandit out-
puts a decision. By playing action, the environment reveals
a reward which is observed by both the bandit algorithm
and the detector instance. The sequential change-point de-
tector which monitors the distribution of each arm either
sends a positive signal to restart the estimated parameters
related to the played arm when a change point is detected,
or sends a negative signal when no change is observed.
The detector algorithm is designed to solve the problem

of sequential change-point detection in a setting where both
the change points and the distributions before and after the
change are assumed to be unknown. This setting corre-
sponds exactly to the situation of an agent facing a multi-
armed bandit whose distributions are unknown and may
change abruptly at some unknown instants.
The framework is as follows:
By forced exploration, we try to ensure each arm is sam-

pled enough and changes can also be detected on arms cur-
rently under-sampled by the bandit algorithm. In the ma-
jority of cases where the environment is described by several

Algorithm 1 Change-point Detection for Heavy-tailed
Bandit
Input: Arms 1 to K, α ∈ (0, 1): forced exploration rate, T :
time horizon.

1: for t = 1, · · · , T do
2: For all arm i = 1, · · · ,K, with probability α/K,

choose arm i ▷ Forced exploration
3: Otherwise with probability 1−α, choose the decision

of the bandit subroutine, Algorithm 2
4: Take the index of the chosen arm, say, j
5: Take the reward sequence of rounds pulling j since

last restart, say, rj1 , rj2 , · · ·
6: Run the detector subroutine, Algorithm 3 on the re-

ward sequence of arm j pulled
7: if Positive answer from DETECT then
8: Clear the history reward sequences and restart

ESTIMATE
9: end if
10: end for

change-points, these change-point can affect sub-sampled
arms. Thus, for local changes, it is not enough to combine
even an optimal bandit algorithm with an optimal online
change point detector strategy. In this way, the bandit will
play the arm whose current index is maximal with high prob-
ability or sample uniformly the arm set with low probability
with force exploration.

3.1 Optimal Bandit
During each piecewise-stationary regime, that is, between

every consecutive two restarts of Algorithm 1, we can run
the bandit algorithm as stationary. Therefore, we can treat
the mean of each arm i as a time-invariant µi. Here we
elaborate on the optimal bandit subroutine algorithm used
in Algorithm 1:

Algorithm 2 ESTIMATE

Input: number of arms K, horizon T

1: Define the number of times arm i being pulled at time
t to be Ti(t)

2: For all arm i = 1, · · · ,K, define µ̂i,s,t as the estimate of
µi

3: Define the index to be Bi,s,t = µ̂i,s,t+
(
8v log t

s

)1
/2 for

s ≥ 8 log t, s, t ≥ 1
4: Otherwise define Bi,s,t = +∞
5: for t = 1, · · · , T do
6: Draw the arm maximizing Bi,Ti(t−1),t

7: Observe the reward
8: Update the estimate µ̂ according to equation 1
9: Update the pulling counts Ti and indices B
10: end for

Here we define the Catoni’s estimator as follows: Define
function ψ : R → R to be a continuous strictly increasing
function satisfying

− log(1− x+ x2/2) ≤ ψ(x) ≤ log(1 + x+ x2/2).

Let δ ∈ (0, 1) be such that T ≥ −4 log δ and the history
reward sequence to be x1, · · · , xs, the we have the Catoni’s



estimator as the unique value µ̂ such that

s∑
j=1

ψ

(√
−2 log δ

T (v + −2v log δ
T+2 log δ

)
(xj − µ̂)

)
= 0 (1)

3.2 Change Detection
Then we introduce the restarted Bayesian change-point

detector. More formally, for a sequence X1, · · · , Xs, we as-
sume each Xi is drawn from a distribution with mean θi.
Then the algorithm will take the sequence as input and re-
turn binary answer. If the answer is negative, it means that
we have θt = θ1 for all t = 2, · · · , s. Otherwise, when the
algorithm outputs positive, it means that there exists some
i ≤ s− 1 so that θt = θ1 for t = 2, · · · , i while θt = θi+1 for
t = i+1, · · · , s. Before we present the detector in Algorithm
3, we define

∏
θ to be the projection operator onto the set

of θ, and that

clip(x, λ) = xmin(1, λ/∥x∥).

Algorithm 3 DETECTOR

Input: {ηt}, λ > 0, θ0 ∈ Θ, G the diameter of Θ, χ ∈ (0, 1)
and the given sequence X1, · · · , Xs.

1: Initialize all estimation θ̂t,t−1 ← θ0
2: for t = 1, · · · , s do
3: θ̂i,t ←

∏
θ(θ̂i,t−1 − ηt−iclip(Xt − θ̂i,t−1, λ)) for every

i ≤ t
4: if there exist i satisfying the criteria in the building

of [9] then
5: Detect change at t and output positive
6: end if
7: end for
8: When no change ever detected, output negative

The detection delay is defined as the number of samples
needed to detect a change. According to [7], the detection
delay of our detector is asymptotically optimal in the sense
that it reaches the existing lower bound. The false alarm
rate corresponds to the probability of detecting a change at
some instant where there is no change.

Note that we borrow the criteria from [9], which also gives
an upper bound on the worst case detection delay. We will
elaborate on this and the undetectable changes in future
works.

4. MAIN RESULTS
In this section, we provide a mathematical analysis of the

regret upper bound related to the application of the frame-
work.

We state the regret bound on each piecewise-stationary
regime, in other words, between each two consecutive restarts
in Algorithm 1:

Lemma 1. Between each two consecutive restarts in Al-
gorithm 1, denote the time span to be T ′, we have the regret
of Algorithm 2 in this interval to be:

R′
T ′ ≤

∑
i:∆i>0

((8σ/∆i) log T + 8∆i log T + 5∆i)

Finally, we combine the results to state the regret

Theorem 2. Algorithm 1 achieves regret that

RT ≤ O(σ1/2
∑
i ̸=i∗

∆
−1/2
i log T +

√
KYTT )

Instance-independently we have that

RT ≤ O(
√
σKT log T +

√
KYTT )

This bound can be comprehended in two parts, that is,

O(σ1/2∑
i ̸=i∗ ∆

−1/2
i log T and O(

√
KYTT ). The former one

corresponds to the regret bound in [3] where it is set to be

stationary but heavy tailed. And the latter O(
√
T ) depen-

dency on time horizon T matches most non-stationary work
with sub-Gaussian distributions.
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