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1. INTRODUCTION
Blockchains are decentralized digital transaction systems.

Most blockchains today suffer from poor transaction through-
put, resulting in exorbitant transaction fees and hindering
widespread adoption. Layer-two blockchain mechanisms are
tools that allow transactions to take place outside of the
main blockchain system, thereby increasing the system’s
throughput [2]. A payment channel network (PCN) is one
such mechanism that is used in practice. This paper focuses
on their long-term transaction processing efficiency.

As the name suggests, a PCN is a network composed of
multiple payment channels. A payment channel is essen-
tially an escrow fund; in other words, it is a special account
in which two parties have partial stake and partial control.
Any two blockchain users can establish a payment channel
by depositing some funds into such an account. Once a chan-
nel is established, the users transact between themselves by
exchanging messages between themselves; these transactions
are not recorded on the blockchain.

By forming a network of payment channels, users who do
not share a channel can transact by routing their transaction
through an intermediary. However, the network brings with
it the additional challenge of routing. An important factor
while routing is the capacity of the available paths. Indeed,
payment channels are limited in their ability to carry trans-
actions by the amount of funds they hold. There has been
extensive prior work on routing in PCNs. In particular, [4]
proves that a well-designed routing protocol can perpetu-
ally serve a ‘circulation demand’ (where each user receives
as much money as it pays out). However, their protocol can-
not handle arbitrary demands. In addition, prior work does
not explore the effect of flow-control, i.e., dropping certain
transaction requests. Flow-control can impact the long-term
efficiency of a PCN because serving a transaction alters the
feasibility of future transactions.

In this work, we present a joint flow-control and routing
protocol for PCNs, which we call the DEBT (DEtailed Bal-
ance Transaction) control protocol. The goal of the protocol
is to maximize the total utility of all users in the network,
subject to some constraints imposed by the network. In
this protocol, each channel quotes a price to the network;
a path’s price is then the sum of the channel prices along
it. Based on these path prices, transacting node-pairs make
flow-control and routing decisions. Channels keep updating
their prices over time based on the transactions that flow

Copyright is held by author/owner(s).

through them. Under stationary demand conditions, we
show that the protocol guides prices and transaction flows
toward an optimal operating point.

2. MODEL
A payment channel network consists of a set of nodes V

and a set of channels E between pairs of nodes. The nodes
are numbered 1, 2, . . . , |V |. A channel connecting nodes u
and v is denoted (u, v). Each channel has a certain capacity,
which refers to the total amount of money escrowed in the
channel. Let cu,v denote the capacity of channel (u, v) and
let c ∈ RE+ be a vector denoting the capacities of all the
channels in the network.

We model the PCN as a discrete-time dynamical system
whose state is described by the balances in each of the chan-
nels. At any given time t, let the balance of node u in chan-
nel (u, v) be xu,v[t]. It follows that the balance of v in the
same channel is cu,v−xu,v[t]. By convention, x contains the
balance of the smaller-indexed node of each channel; the
balance at the opposite end of the channel is inferred from
its capacity. The state vector always satisfies 0 ≤ x[t] ≤ c
(the inequalities hold component-wise).

We assume that in each slot, between every transacting
node-pair, a single transaction request arrives. Let ai,j [t]
denote the monetary value of the transaction request from
source i to destination j in slot t. In general, the requested
transaction amounts could vary arbitrarily over time. For
the sake of simplicity, in this work, we focus on the regime
of constant demands, i.e., we assume that ai,j [t] = ai,j for
all time t and all transacting node-pairs (i, j). The vector
a = (ai,j)(i,j)∈V×V is called the demand vector.

A second assumption we make is that the transaction de-
mand arriving to the payment channel network is elastic. In
other words, node-pairs prefer to have the entire transaction
be served by the PCN, but it is acceptable that the request
is dropped or partially served. We model elastic transaction
requests by means of a utility function. We assume that
the node-pair (i, j) gains a utility of Ui,j(qi,j [t]) upon being
served a transaction of amount qi,j [t] ∈ [0, ai,j ] by the net-
work. We assume that Ui,j(·) is a concave, differentiable,
and nondecreasing function over [0, ai,j ]. We also assume
that Ui,j(0) = 0 and U ′i,j(0) <∞.

We assume that every node pair has a fixed set of paths be-
tween them that they consider for routing transactions. De-
note the kth path by pi,j,k and the set of such paths by Pi,j .
Note that a path from i to j is different from a path from j
to i. Let P denote the set of all paths (P = ∪i,jPi,j). Let R
denote the P × E routing matrix with entries in {−1, 0, 1}



constructed using the convention given in [3]. In R, each
row corresponds to a particular path and each column cor-
responds to a particular channel.

With every path in the network, we associate a flow, which
represents the amount of money sent along that path over
a period of time. Let fi,j,k[t] denote the amount of money
being sent on path pi,j,k in slot t. The amounts of money
sent from node i to node j along all possible paths in slot t
is denoted by fi,j [t], i.e., fi,j [t] , (fi,j,1[t], . . . , fi,j,k[t]). The
total amount of money sent from i to j in slot t is denoted
by qi,j [t]. Thus qi,j [t] , Σkfi,j,k[t]. Finally, let f [t] ∈ RP
denote the set of all the flows in the network in slot t.

With this notation in place, we see that at the end of each
slot, the balances are updated as:

x[t+ 1] = x[t]−Rf [t]. (1)

If a requested flow vector is not feasible (i.e., x[t] becomes
negative or exceeds the capacity), a channel redistributes
its balances evenly by performing an expensive rebalancing
operation (see [2]). Perpetual rebalancing is not viable for a
payment channel network. In particular, the network should
aim to achieve a detailed balance flow in steady state. A
flow vector f is said to be a detailed balance flow if Rf = 0,
which means that the amount of money flowing through each
channel is equal in the two opposite directions.

3. THE DEBT CONTROL PROTOCOL

3.1 A Network Utility Maximization Problem
To formulate the protocol’s objective, we introduce some

notation. Let N denote the set of transacting node-pairs,
i.e., N = {(i, j) : ai,j > 0}. Let U(f) =

∑
(i,j)∈N Ui,j(qi,j)

denote the total utility of all transacting node-pairs as a
function of a stationary flow f . Let A denote the set of
non-negative flows satisfying the demand constraints:

A , {f : f ≥ 0, fi,j ≤ ai,j ∀ (i, j) ∈ N}. (2)

Define a feasible flow to be any flow that meets both the de-
mand constraints and the detailed balance constraints (i.e.,
the condition Rf = 0).

For certain technical reasons, we add a quadratic regular-
izer term, H(f), to the utility function, where

H(f) , −
∑

(i,j)∈N
ηi,j

∑|Pi,j |

k=1
(fi,j,k)2. (3)

Here, ηi,j ≥ 0 controls the weight of the regularizer.
The protocol’s goal is to find a feasible stationary flow that

maximizes the net utility of the payment channel network.
In mathematical terms, this can be expressed as obtaining
a solution to the following optimization problem:

max
f∈A

U(f) +H(f) such that Rf = 0 (P)

The symbol (P) denotes that the optimization problem pre-
sented above is the primal (or original) problem. Let f∗

denote any solution to this problem.
Observe that the set of feasible flows is a compact, convex

set. Moreover, it is nonempty for any problem parameters,
since the empty flow (f = 0) is a feasible flow. Therefore,
a solution to (P) always exists. Also note that (P) is a
convex optimization problem, since both U(f) and H(f) are
concave and the constraint set is convex. Lastly, if all ηi,j
are strictly positive, then the objective function is strongly
concave. This ensures that f∗ is unique.

3.2 The Dual Problem
The primal problem (P) is hard to solve because of the

detailed balance constraints. With the aid of Lagrange mul-
tipliers, we derive its dual problem that does not explicitly
have these constraints. Let λu,v denote the Lagrange mul-
tiplier for the constraint (Rf)u,v = 0; let λ ∈ RE denote
the vector of all such terms. Define the Lagrangian of the
problem (P) by

L(f, λ) , U(f) +H(f)− λTRf. (4)

Using the Lagrangian, we can formulate an equivalent
form of the problem (P) as follows:

max
f∈A

inf
λ∈RE

L(f, λ) (5)

The dual of the optimization problem (P) is obtained by
changing the order of minimization and maximization in (5):

inf
λ∈RE

max
f∈A

L(f, λ) = inf
λ∈RE

D(λ), (D)

where D(λ), called the dual function, is defined as follows:

D(λ) , max
f∈A

U(f) +H(f)− λTRf (6)

For any λ, L(f, λ) is finite for all f ∈ A, because A is a
bounded set. Therefore, D(λ) is well-defined for all λ ∈ RE .
The dual function is a convex function of λ [1].

3.3 A Dual Algorithm
Since the dual problem is an unconstrained convex op-

timization problem, it is easy to solve using the gradient
descent method. To do so, we need to establish conditions
under which D(λ) is differentiable and also obtain an ex-
pression for the gradient of D(λ). Lemma 1 gives us an
expression for the subdifferential of D(λ). Because D(λ) is
a convex function, the subdifferential set is nonempty at all
points. D(λ) is differentiable precisely at those points where
the subdifferential set has a unique element. The lemma
follows immediately from Danskin’s theorem, also known as
the envelope theorem. (See Appendix B of [1]).

Lemma 1. Let D(λ) be the function as defined in (6).
The subdifferential set of D(λ) is given by

∂D(λ) = {∇λL(f, λ) : f ∈ F (λ)} = {−Rf : f ∈ F (λ)}

where F (λ) , arg maxf∈A L(f, λ) is the set of all flow vec-
tors that maximize the Lagrangian, given λ.

The gradient descent algorithm to solve the dual problem
is presented below. Initialize the algorithm by setting λ[0]
to be the zero vector. For every t ∈ N, set

f [t] = arg max
f∈A

L(f, λ[t])

λ[t+ 1] = λ[t] + γRf [t]
(A)

Here, γ is a strictly positive stepsize parameter in the algo-
rithm that remains constant for all time. In each iteration
t, the flows f [t] are set so as to maximize the Lagrangian,
given the current values of λ[t], while the Lagrange mul-
tipliers λ[t + 1] are updated in a direction opposite to the
gradient of D(λ[t]). In case there is more than one value of f
that maximizes L(f, λ[t]), we can set f [t] to any such value.
In this case, algorithm (A) is equivalent to the subgradient
method applied to D(λ).



3.4 Dual Algorithm to a Network Protocol
The first step towards a decentralized implementation of

(A) is to observe that the Lagrangian is a sum of terms,
each concerning one transacting node-pair. The Lagrangian
depends on λ only through the term RTλ (see (4)). Define

µ , RTλ. Then µ is a vector indexed by the paths:

µi,j,k =
∑

u→v∈pi,j,k
λu,v −

∑
v→u∈pi,j,k

λu,v. (7)

Similar to the notation fi,j , define µi,j , (µi,j,1, . . . , µi,j,k).

Further, define L̃(f, µ) to be

L̃(f, µ) ,
∑

(i,j)∈N
Li,j(fi,j , µi,j), where (8)

Li,j(fi,j , µi,j) , Ui,j(qi,j)−
|Pi,j |∑
k=1

fi,j,kµi,j,k + ηi,j(fi,j,k)2

Next, observe that in (A), the flows are chosen by solving:

f [t] = arg max
f∈A

L(f, λ[t]) = L̃(f, µ[t]) ; µ[t] = RTλ[t].

The expression of L̃(f, µ) given in (8) shows that given µ,
the flows between each (i, j) ∈ N can be determined inde-
pendently for each node-pair by solving:

fi,j [t] = arg max
{fi,j : fi,j,k≥0 ∀ k, qi,j≤ai,j}

Li,j(fi,j , µi,j [t]) (9)

Next, we interpret λu,v as the channel price, i.e., the cost
of routing one unit of flow in the direction u→ v through the
channel (u, v). Let the price for routing flows in the opposite
direction of the same channel be −λu,v. Then µi,j,k is the
path price, i.e., the cost that the node pair (i, j) needs to
pay to send a unit flow along the path pi,j,k. It follows
that fi,j,kµi,j,k is the cost of sending a flow of amount fi,j,k
along the path pi,j,k. Thus,

∑
k fi,j,kµi,j,k is the total cost

incurred by the node-pair (i, j) for splitting the total flow
amount qi,j along different paths.

In Li,j(fi,j , µi,j), this cost is subtracted from the utility
gained by the node-pair (i, j) in executing a transaction of
amount qi,j (see (8)). The quadratic term ηi,j

∑
k(fi,j,k)2,

coming from the regularizer, can be interpreted as a penalty
for concentrating all flows along a single path or as an in-
centive to split the total flow along different paths. This is
because for any fixed value of qi,j , the sum

∑
k(fi,j,k)2 is

minimized by splitting qi,j equally among all fi,j,k. Thus,
the interpretation of (9) is that each node-pair tries to maxi-
mize its net utility, i.e., the utility of executing a transaction
with the cost of execution subtracted from it.

We now show how solving (9) can be interpreted as simul-
taneously making routing and flow-control decisions. First,
consider the case when ηi,j is zero. In this case, it is opti-
mal to route the transaction only along the path with the
minimum price; all other paths from i to j carry zero flow.
Let µ∗i,j [t] denote the minimum path price. The amount of
flow carried by this path, qi,j [t], is given by:

qi,j [t] = arg max
q∈[0,ai,j ]

Ui,j(q)− qµ∗i,j [t]. (10)

The choice of the total amount of flow is interpreted as a
flow-control action and the choice of the path to carry the
flow is interpreted as a routing decision.

Now consider the general case. The solution to (9) can be
expressed in terms of the classical waterfilling scheme. To

illustrate this, we invoke the idea of Lagrange multipliers
once again to deal with the constraints in (9). Let νi,j denote
the Lagrange multiplier for the demand constraint qi,j ≤
ai,j . By the KKT conditions [1], the optimal solution to (9)
must satisfy:

fi,j,k =

(
U ′i,j(qi,j)− νi,j − µi,j,k

2ηi,j

)+

∀ k. (11)

The total flow qi,j must also satisfy the demand constraint
(qi,j ≤ ai,j) and the complementary slackness condition:
(qi,j − ai,j)νi,j = 0. Lastly, each νi,j must be nonnegative.

4. CONVERGENCE ANALYSIS
We conclude this paper by showing that, with sufficiently

small step sizes, the flows under the DEBT control proto-
col converge to the optimal flow for the network (Proposi-
tion 1). The proof of this result follows from standard re-
sults on gradient descent on smooth convex functions as well
as Lemmas 2 and 3. The first lemma establishes that the
dual problem always has a (finite) solution, and the optimal
flow in response to such a solution is primal optimal. The
lemma follows from Proposition 3.4.2 of [1], which states
sufficient conditions for strong duality to hold. The second
lemma establishes conditions under which the dual function
is smooth. This result follows from standard properties of
the Fenchel conjugate of convex functions.

Lemma 2. For any instance of the primal problem (P),
the corresponding dual problem (D) has a solution, i.e.,

there exists λ∗ ∈ RE such that D(λ∗) = D∗ , infλ∈RE D(λ).
Further, the set F (λ∗) = arg maxf∈A L(f, λ∗) contains a so-
lution to (P).

Assumption 1. ηi,j ≥ η > 0 ∀ (i, j) ∈ N .

Lemma 3. Under Assumption 1:

• F (λ) = arg maxf∈A L(f, λ) is a single-valued, contin-
uous function for all λ.

• D(λ) is smooth with parameter ‖R‖2op/η, where ‖ · ‖op
denotes the operator norm of a matrix.

Assumption 2. The stepsize of (A) satisfies γ < η/‖R‖2op.

Proposition 1. Under Assumptions 1 and 2:

• D(λ[t])−D(λ∗) ≤ ‖λ
∗‖

2γt
∀ t ≥ 1.

• λ[t]→ λ∗∗ for λ∗∗ ∈ arg minλ∈RE D(λ) as t→∞.

• f [t]
t→∞−−−→ f∗, where f∗ is the unique solution to (P).
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