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1. INTRODUCTION
A fundamental problem in computer system performance,

as well as in the natural sciences, concerns inferring from
observations an understanding of the behavior of stochastic
processes of interacting system components whose dynamics
are driven by an unknown underlying stochastic differential
equation (SDE). The objective in solving this problem is to
infer the underlying equations of the dynamics of the system
from sets of system measurements, indexed over time. Given
the stochastic nature of such systems, together with a lack
of information on stochastic trajectories in many cases [1, 3],
this represents a very challenging problem in general.

In this paper we consider the above inference problem
within the context of complex computer systems modeled as
stochastic processes of interacting system components whose
continuous-time evolution follows SDEs of the general form

ẋ = f(x) + g(x)η(t), (1)

where x ∈ Rn is the n-dimensional state vector, f(x) the
drift term, D(x) = 1

2
g(x)g(x)⊤ the diffusion term, and η(t)

a Gaussian noise vector. The dynamics can be equivalently
formulated in terms of a Fokker-Planck (FP) equation charac-
terizing the time evolution of the probability density P (x, t)
for an ensemble of particles with dynamics given by (1).
Using the Itô interpretation for multiplicative noise, we have

dP (x, t)

dt
= ∇ [−f(x)P (x, t) +∇(D(x)P (x, t))] . (2)

This problem has been extensively studied in cases where
complete stochastic trajectories {x(t), t ≥ 0} are available.
Under the assumption of a lack of information on the stochas-
tic trajectories, which is consistent with computer system
measurement processes as well as the recent work in [1, 3], we
seek to infer the drift and diffusion terms without such tra-
jectory information. More specifically, the available data is
limited to K sets of N cross-sectional measurements collected
at a discrete selection of K time epochs; namely, the data
consists of a series of empirical distributions ν1, ν2, . . . , νK

measured at times t1 < t2 < · · · < tK , respectively, where

νk(x) =
1

N

N∑
i=1

δ(x− xi(tk)), k ∈ [K] := {1, . . . ,K}, (3)

xi(tk) is the ith value measured at time tk, i ∈ [N ], k ∈ [K],
and δ(x) is the Dirac delta-function. The correspondence be-
tween measured points at different times that lie on the same
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trajectory is assumed to be unknown, in contrast to problems
where the available data includes trajectory information.

Our goal is to simultaneously infer both the underlying
dynamics (i.e., drift f and diffusion D) and the assignment
of measured points to trajectories from the empirical mea-
surement distributions ν1, ν2, . . . , νK . In contrast to related
work, we focus directly on the corresponding mathematics
without resorting to any simplifying approximations, and
then we efficiently solve the resulting optimization problem.

Related work. The recent work in [1, 3] considers this
inference problem under the additional assumption that the
diffusion term D is known. Their approach consists of two
key elements: first, they approximate the SDE in (1) by
a deterministic probability flow (DPF) ordinary differential
equation (ODE) ẋ = f(x)−∇D(x)−D(x)∇ logP (x, t) whose
trajectories preserve the evolution of the probability density
under (2); and second, they apply score-function estima-
tion to approximate the score term ∇ logP (x, t) of the DPF
ODE. The problem is then solved through a combination
of score-based generative modeling, a neural network pa-
rameterization of the drift, and optimal transport distance
measures on the empirical distributions νk.

More specifically, the first step consists of using the evolu-
tion of the empirical distribution to infer the score s(x, t) =
∇ logP (x, t) by solving the following optimization problem:

ŝ(x, tk) = argmin
s

K∑
k=1

λ(tk)Eνk

[
tr(∇s(x, tk)) +

1

2
||s(x, tk)||22

]
,

where λ(tk) is a weighting function for the measurements
at time tk, k ∈ [K], and s(x, t) is parameterized by a fully
connected neural network whose weights are tuned for the
optimization problem. Once an accurate score model is
obtained, the second step consists of solving for the drift f(x)
associated with the DPF ODE by minimizing the weighted
distance between measured distributions and those predicted
using the ODE as follows:

θ̂ = argmin
θ

K∑
k=1

γ(tk)L(µ̂k
θ, ν

k), (4)

µ̂k
θ(x) =

1

N

N∑
i=1

δ(x− x̂i(tk)), k ∈ [K], (5)

x̂i(tk) = xi(tk−1) +

∫ tk

tk−1

(fθ(xi)−∇D(xi)

−D(xi)ŝ(xi, τ)) dτ, i ∈ [N ], (6)

where γ(tk) is a weighting function for the measurements at



time tk, L(·, ·) a loss function providing a distance measure
between empirical distributions, and the drift fθ(x) parame-
terized by a fully connected neural network whose weights
θ are tuned as part of the optimization. Here L(·, ·) pro-
vides an optimal transport distance measure between the
predicted density µ̂k

θ(x) at time tk, given the previous mea-
surement, and the empirical distribution νk(x) at time tk,
k ∈ [K]. Given its high computational and sample complex-
ity, Sinkhorn divergences are used to estimate such optimal
transport measures together with related algorithms to more
efficiently solve the minimization problem in (4)–(6) [1, 3].

2. OUR APPROACH
We derive two approaches to address the general inference

problem of interest, both by studying and dealing directly
with the stochasticity of the process without resorting to
any simplifying approximations, and then efficiently solving
the resulting optimization problem. Specifically, in our first
approach, we exploit the full stochastic dynamics of the
interacting components of the system, each formulated in
terms of the FP equation (2), to generate the predicted
density µ̂k

θ(x) with respect to the unknown drift f(x) and
diffusion D. This then leads to the optimization problem:

θ̂ = argmin
θ

K∑
k=1

L(µ̂k
θ, ν

k), (7)

µ̂k
θ(x) =

1

N

N∑
i=1

P̂i(x, tk), P̂i(x, tk−1) = δ(x− xi(tk−1)),

dP̂i(x, t)

dt
= ∇

[
−fθ(x)P̂i(x, t) +∇(Dθ(x)P̂i(x, t))

]
,

where L(·, ·) is a loss function providing an optimal trans-
port distance measure between the predicted density µ̂k

θ(x)
at time tk, given the previous measurement, and the em-
pirical distribution νk(x) at time tk, k ∈ [K]. In contrast
with (4)–(6), the predicted densities µ̂k

θ(x) are expressed
as the arithmetic mean of the densities P̂i(x, tk) obtained
by evolving the FP equation from tk−1 to tk, assuming a
Dirac delta function for the initial distribution on the previ-
ous measurements xi(tk−1). Both Wasserstein metrics and
Sinkhorn divergences are considered for L(·, ·). We note that
the weights γ(tk) can be easily accommodated in (7) of our
formulation as in (4) of the DPF approach, but omit these
details for ease of exposition.

The predicted densities µ̂k
θ(x) can be equivalently ex-

pressed in terms of a transition probability, or a Green’s
function, associated with the FP equation as

P̂i(x, tk) = P̂θ(x, tk|xi(tk−1), tk−1). (8)

In practice, the transition probability P̂θ(x, tk|y, tk−1) can
be computed by various approaches, including: (i) evolving
numerically the FP equation forward in time, which is exact
but inefficient; (ii) assuming a Gaussian transition distri-
bution, which is efficient but primarily accurate for linear
systems and small time intervals δt = tk − tk−1; and (iii)
employing refined approximations of the Green’s function,
which is efficient and more broadly accurate.

In our second approach, we evaluate the transition proba-
bility corresponding to state xi at time tk, i ∈ [N ], k ∈ [K],
by expressing the original optimization problem in terms of

the following maximum likelihood optimization

θ̂ = argmax
θ,ϖ1,...,ϖK

K∏
k=1

N∏
i=1

P̂θ(xϖk(i)(tk), tk|xi(tk−1), tk−1), (9)

where the conditional densities P̂θ(·, ·|·, ·) depend on the
parameterization θ of the drift fθ and diffusion Dθ by means
of (8) associated with the FP equation. The optimization is
then performed over permutations ϖk(i), k ∈ [K], i ∈ [N ],
that determine the most likely pairing between measurements
at adjacent times, thus attempting to reconstruct the desired
trajectories. We can equivalently formulate the optimization
problem (9) in terms of minimizing the negative summations
of the log-likelihoods as

θ̂ = argmin
θ,ϖ1,...,ϖK

(
−

K∑
k=1

N∑
i=1

log P̂θ(xϖk(i)(tk), tk|xi(tk−1), tk−1)

)
,

(10)
and hence (10) is equivalent to a linear assignment optimiza-
tion problem that can be solved in polynomial time.

When the time intervals δt = tk − tk−1, k ∈ {2, . . . , N}, of
the general FP equation are small, then the transition prob-
ability can be approximated by a Gaussian distribution [4]:

P̂θ(xk, tk|xk−1, tk−1) =
1√

(2πδt)n detDθ(xk−1)
exp

(
− 1

4δt
(x⊤

k

− x⊤
k−1 − δtfθ(xk−1)

⊤)Dθ(xk−1)
−1(xk − xk−1 − fθ(xk−1)δt)

)
.

Upon substituting the above equation into (10), we derive

θ̂ = argmin
θ,ϖ1,...,ϖK

K∑
k=1

N∑
i=1

(
1

4δt

[
xϖk(i)(tk)

⊤ − xi(tk−1)
⊤

− δtfθ(xi(tk−1))
⊤
]
·Dθ(xi(tk−1))

−1 ·
[
xϖk(i)(tk)

− xi(tk−1)− δtfθ(xi(tk−1))
]
+

1

2
log detDθ(xi(tk−1))

)
,

= argmin
θ

K∑
k=1

(
1

4δt
WDθ(xi(tk−1))

−1(µ
k
θ, ν

k)

+
1

2
⟨log detDθ(x)⟩xi(tk−1)

)
, (11)

where the inner product above is interpreted as a distance
between a measurement xϖk(i)(tk) at time tk and the mean
m̂i,k = xi(tk−1) + δtfθ(xi(tk−1)) of the Gaussian likelihood
based on a measurement xi(tk−1) at time tk−1 with respect
to the spatially dependent metric Dθ(xi(tk−1))

−1. The op-
timization over the permutations ϖk(i), k ∈ [K], i ∈ [N ],
implies that this distance is exactly the Wasserstein distance
with metric Dθ(xi(tk−1))

−1 between the two empirical dis-
tributions: νk, with masses at the measured data (3), and
µk
θ given by µk

θ(x) =
1
N

∑N
i=1 δ(x−xi(tk−1)−δtfθ(xi(tk−1)),

with masses at the predicted Gaussian likelihood means. The
last term in (11) depends only on Dθ(x) and thus, when
the diffusion matrix is unknown as assumed herein, this last
term plays the role of a regularization term (otherwise, when
Dθ(x) is known, the last term is a constant and plays no
role). The minimization of the Wasserstein distance with
metric Dθ(xi(tk−1))

−1 in (11) will tend to increase the spec-
tra of the diffusion matrix Dθ(x), while the corresponding
regularization term will tend to favor small eigenvalues.



3. PERFORMANCE EVALUATION
We first note that the computational complexity of each

of our approaches is no greater than that of the drift op-
timization step of the DPF approach in (4)–(6) from [1,
3], while the the score function inference required for the
DPF approach introduces additional computational com-
plexity. Next, we compare the prediction accuracy of our
second approach based on the maximum likelihood formula-
tion in (11) with that of the DPF approach (4)–(6), both
of which can be performed explicitly in the case of Ornstein-
Uhlenbeck (OU) dynamics where the drift is linear and fixed
with fθ(x) = −Ax and the diffusion is constant noise with
Dθ(x) = D. We assume the steady-state score ŝ(x) in (6)
is inferred perfectly, i.e., the stationary distribution is given
by Pss(x) = ((2π)2 det(Σ))1/2 exp

(
− 1

2
x⊤Σ−1x

)
, where

the covariance Σ is the solution to the Lyapunov equation
AΣ +ΣA⊤ = 2D, and therefore the steady-state score is
given by ŝ(x) = ∇ logPss(x) = −Σ−1x.

Analytical comparison. Under the above assumptions,
the DPF in (6) becomes dx = (−Ax +DΣ−1x)dτ , which
from the solution of (4)–(6) yields the desired prediction for
time tk, k ∈ [K], as follows

x̂(tk) = exp
(
(−A+DΣ−1)δt

)
x(tk−1)

≈ (I− δt(A−DΣ−1))x(tk−1). (12)

The corresponding maximum likelihood mean prediction
from the solution of our formulation in (11) renders

m̂(tk) = exp(−Aδt)x(tk−1) ≈ (I− δtA)x(tk−1). (13)

The superior prediction accuracy of (13) over (12) can be
observed analytically by considering the difference between
the term δt(A −DΣ−1) in (12) and the term δtA in (13).
In the DPF ODE, the additional DΣ−1 term introduces a
systematic bias in the predicted position of the measurement
at the next time epoch. Such bias may help to explain the
limitation that this previous DPF approach cannot accu-
rately infer the drift from stationary data as demonstrated
in [1]. Interestingly, they found that using stationary data
led to inference of the equilibrium solution corresponding to
AΣ = ΣA⊤ (and therefore Σ = A−1D), even for systems
that are not in equilibrium. We conjecture that their opti-
mization scheme may implicitly prefer x̂(tk) = x(tk−1) in
the stationary case, thus leading to this equilibrium solution.
In contrast, our approach yields an unbiased prediction for
the mean location of the next measurement. As our numer-
ical example below further demonstrates, this allows us to
accurately infer the drift even from stationary data.

Numerical experiment. As a representative example,
we consider the six-dimensional OU process previously stud-
ied in [1, 2]. The process has non-isotropic diffusion and
an asymmetric drift matrix; see equation (H5) in [2] for the
drift and diffusion matrix elements. We generate trajecto-
ries of this process using the Euler-Maruyama discretization
with step size dt = 0.001, discarding the initial transient
portions of the trajectories so that the data are samples of
the stationary distribution of the OU process.

Cross-sectional density measurements are collected at a
time interval δt = 0.1 across K time epochs with N measure-
ments at each time epoch. As emphasized above, the corre-
spondence between measurements at different time epochs
(i.e., the trajectory information) is unknown. For the repre-
sentative example in Fig. 1, we use K = 20 and N = 200.

(a) (b)

Figure 1: Inference of OU process without trajectories. (a)
Exact (top) and inferred (bottom) drift in a 2D slice of the
6D state space. A histogram of the measured data (across all
times) is shown in blue in the background of the lower plot.
(b) Comparison of inferred and exact drift and diffusion
matrices. Since our drift model is nonlinear we compare
against the Jacobian dfθ/dx averaged over measured data-
points. The final column shows the difference between exact
and inferred matrices relative to the matrix norms.

The drift fθ(x) is parameterized with a fully connected feed-
forward neural network with two hidden layers and 10 nodes
per layer. We assume the diffusion is constant Dθ(x) = Dθ,
but the entries of the diffusion matrix are unknown. The
drift and diffusion terms are learned using the loss function
given in (11), i.e., using the Wasserstein distance small-δt
limit of the maximum likelihood optimization problem.

Fig. 1(a) respectively shows the exact and inferred drift
fields f(x) and fθ(x) for a two-dimensional slice (along the
(x2, x4)-axis) of the six-dimensional state space. Our in-
ference approach accurately reproduces quantitatively the
drift of the OU process, performing best in the region near
the origin where the data is concentrated (as shown by the
histogram in the background of the estimated drift field).

To further quantify the performance of our inference scheme,
Fig. 1(b) shows comparisons of the exact and inferred OU
drift and diffusion matrices. For the drift comparison (where
our neural network model is nonlinear), we compute the Jaco-
bian and average over measured data points. Relative to the
matrix norms, our approach accurately captures elements of
these matrices with less than 10% and 5% error, respectively.

The above analytical/numerical comparisons demonstrate
two major advances in our approach to stochastic process
inference without trajectories: (1) we infer the dynamics
from stationary data; (2) we simultaneously infer the drift
and diffusion. It is important to note that neither (1) nor
(2) was possible in previous work [1, 3]. Ongoing work is
studying performance scaling with both data quantity and
regularization schemes to prevent overfitting, particularly in
areas of the state space with limited data.
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