
Markov Decision Process Framework
for Control-Based Reinforcement Learning

Yingdong Lu, Mark S. Squillante, Chai Wah Wu
Mathematical Sciences Department, IBM Research

Thomas J. Watson Research Center
Yorktown Heights, NY 10598, USA

yingdong@us.ibm.com, mss@us.ibm.com, cwwu@us.ibm.com

1. INTRODUCTION
For many years, reinforcement learning (RL) has proven

to be very successful in solving a wide variety of learning
and decision making under uncertainty (DMuU) problems,
including those related to game playing and robotic control.
Many different RL approaches, with varying levels of success,
have been developed to address these problems.
Among these different approaches, model-free RL has been

successful in solving various DMuU problems without any
prior knowledge. Such model-free approaches, however, of-
ten suffer from high sample complexity that can require an
inordinate amount of samples for some problems which can
be prohibitive in practice, especially for problems limited by
time or other constraints. Model-based RL has been success-
ful in demonstrating significantly reduced sample complex-
ity and in outperforming model-free approaches for various
DMuU problems. Such model-based approaches, however,
can often suffer from the difficulty of learning an appropriate
system model and from worse asymptotic performance than
model-free approaches due to model bias from inherently as-
suming that the learned system dynamics model accurately
represents the true system environment; in addition, an ap-
proximate solution of the optimal control policy is often
obtained based on the learned system dynamics model [4].
We propose herein a novel form of RL for seeking to di-

rectly learn an optimal control policy of a general underlying
(unknown) dynamical system and to directly apply the corre-
sponding learned optimal control policy within the dynamical
system. This general approach is in strong contrast to many
traditional model-based RL methods that, after learning the
system dynamics model often of high complexity and dimen-
sionality, then use this system dynamics model to compute an
optimal solution of a corresponding dynamic programming
problem, often applying model predictive control [4]. Our
control-based RL approach instead learns the optimal param-
eters that derive an optimal policy function from a family
of control policy functions, often of much lower complexity
and dimensionality, from which the optimal control policy
is directly obtained. Furthermore, we establish that our
general approach converges to an optimal solution analogous
to model-free RL approaches while eliminating the problems
of model bias in traditional model-based RL approaches.
The theoretical foundation and analysis of our control-

based RL approach is introduced within the context of a gen-
eral Markov decision process (MDP) framework that extends
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the policy associated with the classical Bellman operator to a
family of control policy functions derived from a correspond-
ing parameter set, expands the domain of these policies from
a single state to span across states, and extends the associ-
ated optimality criteria through these generalizations of the
definition and scope of a control policy, all providing theo-
retical support for our general control-based RL approach.
Within this MDP framework, we establish results on conver-
gence w.r.t. both a contraction operator and a corresponding
form of Q-learning, establish results on various aspects of
optimality and optimal control policies, and introduce a new
form of policy-parameter gradient ascent. To the best of
our knowledge, this is the first proposal and analysis of such
a general control-based RL approach based on theoretical
support from an underlying extended MDP framework.
Generally speaking, the basic idea of learning a parame-

terized policy within an MDP framework to reduce sample
complexity is not a new idea. One such popular approach
concerns policy gradient methods [1], where gradient ascent
of the value function in a space of policies is used together
with projection to obtained an optimal policy. These ideas
have been further refined in neural network based policy op-
timization approaches such as TRPO and PPO [1]. In strong
contrast, our proposed approach derives the optimal policy
through control-policy functions that map estimates of a few
global (and local) parameters to optimal control policies in
an iterative manner based on observations from applying the
control policy of the current estimate of parameters.
We next present the MDP framework supporting our gen-

eral approach that directly learns the parameters of the
optimal control policy, together with the corresponding theo-
retical results on convergence and optimality as well as a new
form of policy-parameter gradient ascent. We refer to [3] for
all proofs and additional details and references.

2. MDP FRAMEWORK
Consider a discrete-space (which can be relaxed within our

framework and results), discrete-time (DSDT) discounted
MDP framework defined over a set of states X, a set of
actions A, a transition probability kernel P, a reward function
r mapping state-action pairs to a bounded subset of R, and
a discount factor γ ∈ [0, 1). Let EP denote expectation w.r.t.
the probability kernel P. Then the discounted infinite-horizon
stochastic dynamic programming formulation associated with
the DMuU problems of interest can be expressed as

max
a1,a2,...

EP

[ ∞∑
t=0

γtr(xt, at, xt+1)

]
s.t. xt+1 = f(xt, at), (1)



where xt ∈ X represents the state of the system, at ∈ A rep-
resents the control action decision variable, f(·, ·) represents
the evolution function of the stochastic dynamical system
characterizing the system state given the previous state and
the taken action, and r(·, ·, ·) represents a reward-based ob-
jective function of both the system states and control action.
We note that (1) can represent a wide variety of stochastic

dynamic programs associated with DMuU problems based on
the different forms taken by the evolution function f(·, ·), to-
gether with the transition probability kernel P; f(·, ·) can also
characterize the discretized evolutionary system dynamics
governed by (stochastic) differential equations or (stochastic)
partial differential equations; and r(·, ·, ·) is also allowed to
take on various general forms, and thus can represent any
combination of cumulative and terminal rewards.
We first present a mathematical framework for our general

approach to control-based RL, turn to establish correspond-
ing theoretical results on convergence and optimality, and
close with a new form of policy-parameter gradient ascent.

Mathematical Framework
Consider a DSDT discounted MDP denoted by (X,A,P, r, γ),
where X, A, P, r and γ ∈ [0, 1) are as defined above. Let
Q(X× A) denote the space of bounded real-valued functions
over X× A with supremum norm. For the state xt at time
t ∈ Z in which action a is taken, i.e., (xt, a) ∈ X×A, denote by
P(·|xt, a) the conditional transition probability for the next
state xt+1 and precisely define EP := Ext+1∼P(·|xt,a) to be
the expectation w.r.t. P(·|xt, a). A stationary policy π(·|x) :
X → A defines a distribution of available control actions
given the current state x, which reduces to a deterministic
policy when the conditional distribution renders a constant
action for state x; with slight abuse of notation, we always
write policy π(x). Let Π denote the set of all policies X→ A,
and define the Bellman operator TB : Q×Q as

TBQ(x, a) := r(x, a) + γEP max
b∈A

Q(x′, b),

with x′ denoting the next state upon transition from x. Let
Q∗(x, a) denote the optimal action-value function, V ∗(x) =
maxaQ

∗(x, a) the optimal value function, and π∗(x) =
arg maxaQ

∗(x, a) the optimal action; Q∗(x, a) is the unique
fixed point of TB , a contraction in supremum norm.
We next introduce two key ideas to this standard MDP

framework, one extending the policy π : X→ A associated
with the Bellman operator to a family of control-policy func-
tions that map a parameter vector from a parameter set to
a control policy that is optimal (or approximately optimal)
under the given parameter vector; and the other extend-
ing the domain of these control policies from a single state
to span across all (or a large subset of) states in X. Let
P be a subset of a metric space (e.g., Euclidean spaces)
that serves as a parameter set. A control policy mapping
G : P → Π identifies a family G(P) ⊆ Π of control policies
derived from vectors in the parameter set, where for any
p ∈ P the control-policy function G(·) identifies a partic-
ular control policy Fp in Π. Then, F represents a family
of control-policy functions G : p 7→ Fp that yield control
policies Fp : X → A between the set of states and the set
of actions. The family F includes control-policy functions G
that provide the best rewards in expectation across all (or
a large subset of) states x ∈ X of the MDP from among all
control-policy functions in F, derived w.r.t. the parameter
vector p ∈ P that encodes both global and local information

but is unknown and needs to be learned. It is evident, in the
case F contains the policy functions which recover the control
policies Fp(x) = arg maxa∈A q(x, a) for all q(x, a) ∈ Q(X×A)
and for p ∈ P, that the introduction of the family F in our
framework achieves the same outcome as the standard MDP
framework, but with great reductions in the sample complex-
ity over the Bellman equation and operator. Another very
important difference is that our search is across all (or a large
subset of) states x ∈ X to find a single (or small collection of)
optimal parameter vector(s) p∗ ∈ P that derives a single (or
small collection of) optimal control-policy function(s) G ∈ F
which coincides with the Bellman equation for each state.
For each Q-function q(x, a) ∈ Q(X × A), we define the

generic function q̃ : X× G(P)→ R as q̃(x,Fp) = q(x,Fp(x))
where the control policy Fp is obtained from the control-
policy function G derived from the parameter vector p ∈ P;
thus, q̃(x,Fp) ∈ Q(X× G(P)) is readily apparent. Iterations
w.r.t. the operator of our mathematical framework (defined
precisely below) then consist of improving the estimates of
the parameter vector p while applying the optimal control-
policy function G derived from the current estimate of p.

Convergence and Global Optimality
Define the operator T on Q(X× G(P)) as

(Tq̃)(x,Fp) =∑
y∈X

PFp(x)(x, y)
[
r(x,Fp(x), y) + γ sup

p′∈P
q̃(y,Fp′)

]
. (2)

The operator T is an analog of the Bellman operator within
our MDP framework, for which we have the following result.

Lemma 2.1. For any γ ∈ (0, 1), the operator T in (2) is
a contraction in the supremum norm.

Therefore, for any function q̃ ∈ X × G(P), the iterations
Tt(q̃) converge as t→∞ to q̃∗(x,Fp), the unique fixed point
of the contraction operator T, and q̃∗(x,Fp) equals∑

y∈X

PFp(x)(x, y)
[
r(x,Fp(x), y) + γ sup

p′∈P
q̃∗(y,Fp′)

]
. (3)

Next consider convergence of the Q-learning algorithm
within the context of our general MDP framework. In par-
ticular, we focus on the classical Q-learning update rule:

q̃t+1(xt,Fp,t) = q̃t(xt,Fp,t) + αt(xt,Fp,t)
[
rt (4)

+ γ sup
p′∈P

q̃t(xt+1,Fp′)− q̃t(xt,Fp,t)
]
,

for 0 < γ < 1, 0 ≤ αt(xt,Fp,t) ≤ 1 and iterations t. Let Fp,t
be a sequence of control policies that covers all state-action
pairs and rt the corresponding reward of applying Fp,t to
state xt. We then have the following convergence result.

Theorem 2.1. Suppose T is a contraction operator as
defined in (2). If

∑
t αt = ∞,

∑
t α

2
t < ∞, and rt are

bounded, then q̃t converges to q̃∗ as t→∞.

Lastly, we introduce an important assumption followed by
the corresponding globally optimal convergence result.

Assumption 2.1. There exist a policy function G in the
family F and a unique parameter vector p∗ in the parameter
set P such that, for any state x ∈ X, π∗(x) = Fp∗(x)= G(p∗)(x).



Intuitively, this says F is rich enough to include a global
policy that coincides with the Bellman operator for each
state. We then have the following global convergence result.

Theorem 2.2. Suppose Assumption 2.1 holds for family
of policy functions F and its parameter set P with contraction
operator T in (2). If

∑
t αt = ∞,

∑
t α

2
t < ∞, and rt are

bounded, then q̃t converges to q̃∗ as t→∞ and the optimal
policy function is derived from a unique parameter vector p∗.

Convergence and Approximate Optimality
Let F be sufficiently rich to satisfy Assumption 2.1. We then
consider our general MDP framework under a less rich family
F1 ⊂ F of policy functions G(1) ∈ F1 derived from parame-
ter vectors p of the parameter set P1. Define the operator
T1 : Q(X×G(1)(P1))→ Q(X×G(1)(P1)) as in (2) for any func-
tion q̃1(x,F (1)

p ) ∈ Q(X×G(1)(P1)), namely (T1q̃1)(x,F (1)
p ) =∑

y∈X PF(1)
p (x)

(x, y)
[
r(x,F (1)

p (x), y)+γ supp′∈P1
q̃1(y,F (1)

p′ )
]
.

From Lemma 2.1, operator T1 is a contraction in supremum
norm and therefore, in the limit as t→∞, Tt

1(q̃1) converges
to the unique fixed point q̃∗1(x,F (1)

p ) of the contraction op-
erator, for any function q̃1 ∈ Q(X× G(1)(P1)). Theorem 2.1
implies that the corresponding Q-learning iterates q̃1,t con-
verge to the corresponding q̃∗1 satisfying (3) as t→∞.
Now consider two families F1 and F2 of policy functions,

where F1 ⊂ F2 ⊂ F and the members of Fi are derived from
the parameter vectors of the corresponding parameter sets Pi,
i = 1, 2. From Lemma 2.1 and Theorem 2.1, for i = 1, 2, the
contraction operators Ti : Q(X×G(i)(Pi))→ Q(X×G(i)(Pi))
under the parameter sets Pi converge to the unique fixed
points q̃∗i (x,F (i)

p ) that equals, for all x, p ∈ Pi:∑
y∈X

PF(i)
p (x)

(x, y)
[
r(x,F (i)

p (x), y) + γ sup
p′∈Pi

q̃∗i (y,F (i)

p′ )
]
. (5)

Lemma 2.2. Assume the state and action spaces are com-
pact and Fp is uniformly continuous for each p. For the
two parameter sets P1 and P2 above and any two param-
eter vectors p1 ∈ P1 and p2 ∈ P2, let d(·, ·) be a sup-
norm distance function defined over the action space A, i.e.,
d(F (1)

p1 ,F
(2)
p2 ) = supx∈X ‖F

(1)
p1 (x) − F (2)

p2 (x)‖. Then, for all
ε > 0 there exists δ > 0 such that, if ∀p1 ∈ P1 ∃p2 ∈ P2

with d(F (1)
p1 ,F

(2)
p2 ) < δ and if ∀p2 ∈ P2 ∃p1 ∈ P1 with

d(F (1)
p1 ,F

(2)
p2 ) < δ, we have supx∈X ‖q̃∗1 − q̃∗2‖ < ε.

Intuitively, Lemma 2.2 shows that, for any policy families
F1 ⊂ F2 sufficiently close to each other, the fixed points
q̃1, q̃2 of the corresponding operators T1 and T2 are also
close to each other. When the policy families F1 ⊂ F2 are
sufficiently rich and approach F, then the fixed points of
the corresponding operators T1,T2 approach the unique
fixed point of F satisfying (3), and therefore they approach
the optimal q-value as promised by Bellman. We formally
characterize this asymptotic convergence of approximate
optimality to global optimality in the following result.

Theorem 2.3. Assume the state and action spaces are
compact and Fp is uniformly continuous for each p. Consider
a sequence of families of policy functions F1 ⊂ F2 · · · ⊂
Fk−1 ⊂ Fk such that

⋃k
i=1 Fi → F as k →∞, with P and Pi

respectively denoting the parameter sets corresponding to F
and Fi, i = 1, . . . , k. Then, supx∈X ‖q̃∗k − q̃∗‖ → 0 as k →∞.

One specific instance of a sequence of the families of policy
functions F1 ⊂ F2 · · · ⊂ Fk−1 ⊂ Fk in Theorem 2.3 con-
sists of piecewise-linear control policies of increasing richness
(e.g., the class of CPWL functions in [2]) w.r.t. finer and finer
granularity of the policy function space converging towards F.

Control Policy Parameter-Vector Gradient Ascent
Building on the above results, we seek to determine the
components of the unknown parameter vector p from which
to derive the optimal control policy Fp∗ . One such approach
consists of a corresponding gradient ascent method where the
policy Fp is chosen according to an optimal control objective
in terms of the value function V w.r.t. the parameter vector p.
More formally, for stepsize η, the gradient ascent formulation
of our general policy gradient method is given by

pt+1 = pt + η
∂V

∂Fpt
∂Fpt
∂pt

. (6)

Note that standard policy gradient methods are a special
case of (6) where the parameter vector p is directly replaced
by the policy π. In particular, the special case of G being an
identity map with ∂V

∂Fpt

∂Fpt
∂pt

replaced by ∂V
∂πt

corresponds to
the direct policy gradient parameterization case in [1].
One important instance of the map G : p 7→ Fp concerns

policies Fp that are derived from an optimal control formu-
lation when the dynamics of the system are defined in terms
of the (unknown) parameter vector p. For example, consider
a general LQR optimal control problem where A(p), B(p)
denote the coefficients of a linear dynamical system, i.e.,
ẋ = A(p)x+B(p)u, with unknown p. At each step t of the
policy gradient method in (6), we compute the solution K(pt)
of the Riccati (algebraic or differential depending on the hori-
zon) equations for the current parameter estimate pt, and
derive the optimal linear feedback control Fpt = u = K(pt)x;
the parameter estimate pt+1 is then updated according to (6).
As an illustrative example, consider the problem of landing

a lunar module (LLM) to maximize the cumulative reward
comprising positive points for successful degrees of soft land-
ing and negative points for fuel usage and crashing. At each
step t of the policy gradient method in (6), we compute
the solution for the soft LLM problem w.r.t. a Riccati-like
matrix differential equation [5] in terms of pt, then derive a
nonlinear optimal feedback control from this solution of the
corresponding Riccati equation, and lastly update the pa-
rameter estimate pt+1 according to (6). Here, the unknown
parameter vector pt consists of the mass of the spacecraft,
the thrust of the engines, and the gravity of the moon.
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