A queueing-theoretic model for resource allocation in one-dimensional distributed analytics network

Nitish K. Panigrahy†, Prithwish Basu‡, Don Towsley§, Ananthram Swami¶, Kevin S. Chan‡ and Kin K. Leung¶

† University of Massachusetts Amherst, MA, USA. Email: {nitish, towsley}@cs.umass.edu
‡ Raytheon BBN Technologies, Cambridge, MA 02138, USA. Email:prithwish.basu@raytheon.com
§ Army Research Laboratory, Adelphi, MD 20783, USA. Email:ananthram.swami, kevin.s.chan}.civ@mail.mil
¶ Imperial College London, London SW72AZ, UK. Email: kin.leung@imperial.ac.uk

ABSTRACT
We consider the problem of allocating requesters of analytic tasks to resources on servers. We assume both requesters and servers are placed in a one dimensional line: [0, ∞) according to two different Poisson processes with each server having finite capacity. Requesters communicate with the servers under a noninterference wireless protocol. We consider a “Move to Right” (MTR) request allocation strategy where each requester is allocated to the nearest available server to its right. We start our analysis from a single resource per request scenario where each requester demands a single computational resource. We map this scenario to an M/M/1 queue or a bulk service M/M/1 queue depending on the capacity of the servers. We compare the performance of the strategy with the globally optimal strategy taking “expected distance traveled by a request” (request distance) as performance metric. Next, we extend our analysis to two resources per request scenario. We show that it can be transformed into an equivalent fork-join queue problem. Numerical results are presented to validate the claim.

1. INTRODUCTION
Past few years have witnessed a significant growth in the use of distributed network analytics involving agile code, data and computational resources. In many of such networks, for example, Internet of Things (IoT) [3], a large number of computational and storage resources are widely distributed in the physical world. Thus the spatial distribution of resources plays an important role in determining the overall performance of the analytics network.

In a distributed analytics network, the requesters generating analytic tasks and the servers providing services to the tasks are distributed over a geographic region. We collectively term the requesters and the servers as “devices”. Each analytic task may require a set of resources: computation, code and data resources to achieve computation objectives. The resources are placed on physical devices. For successful completion of each analytic task, an algorithm needs to execute the following functions [4]: (i) Placement of computing resources: i.e. basically determining which devices would perform the computation for the analytic task. (ii) Retrieval of data/code resources: The retrieval may involve communicating with the requesters that provide data/code directly or with the data/code servers that store them. (iii) Single/Multi-hop routing: which involves transferring the data/code through the network to the computing devices. (iv) Handling limited computational capacity: As the computational devices may have limited capacity, a viable algorithm should correctly place the computing resources on devices adhering to the capacity constraints.

In this work, we consider the placement of requesters and servers in a geographic region defined by a one dimensional line L : [0, ∞). The requesters and servers are placed according to two different Poisson processes. We assume any communication between the devices involves non-interfering single hop wireless transmission, also known as Direct transmission model in the literature [2]. We focus on analyzing the following two scenarios.

First, we consider the single resource scenario: In this case, we place the computing resources on servers according to “Move to Right” (MTR) request allocation strategy i.e. the geographically nearest available server to the right of the requester is allocated to the analytic task. We assume requesters provide on spot data and code for computation to the selected servers over a wireless channel. We find that the single resource scenario can be modeled as an M/M/1 or a bulk service M/M/1 queue depending on the capacity of the servers where capacity denotes the maximum number of requests that can be served by a server. We relate the “expected distance traveled by a request” (request distance) in the analytic network to the expected sojourn time for the corresponding queueing model. Using request distance as the performance metric, we compare MTR strategy to a globally optimal strategy.

Second, we consider the two resource scenario: Here, we place the computing resources on the requesters while the retrieval involves communicating with two sets of servers: the data servers and the code servers. We assume both data and the code servers are distributed over L according to a single homogeneous Poisson process. We also assume that due to interference and large data and code size, the data and code servers can only serve one request. Again we find that this scenario can be transformed into an equivalent fork-join queue problem. We validate our claim with numerical experiments.

Copyright is held by author/owner(s).
2. SINGLE RESOURCE SCENARIO

Consider a set of requesters \(R \) requesting analytics tasks of equal computation requirements and a set of computation servers \(S \) that can execute these requests. Assume that each server \(j \in S \) has an execution capacity \(C_j \in \mathbb{Z}^+ \) measured in units of number of tasks being processed at the time. Suppose that requesters and servers are located in space \(\mathcal{L} \) equipped with a distance measure. Formally, let \(r : R \rightarrow \mathcal{L} \) and \(s : S \rightarrow \mathcal{L} \) be the location functions for requesters and servers, respectively, such that a distance measure \(d_\mathcal{L}(r, s) \) is well defined for all pairs \((r, s) \in R \times S\). In this section we examine the scenario where \(\hat{d} \) is treated in Figure 1 where starting from the left requests are assigned to the closest available server on the right. Let \(L \) be the requester density and \(C \) be the server density. Formally, let \(\lambda \) be the requester density and \(\mu \) the server density. The MTR rule for assigning requesters to servers is illustrated in Figure 1 where starting from the left requests are assigned to the closest available server on the right. Let \(d_i, i \in R \) denote the distance between requester \(i \) and the server serving the requester. Last, define \(N_z \) to be the number of requests that traverse through point \(X \in \mathcal{L} \) as shown in Figure 1. We primarily focus on deriving request distance for each request. We first focus on the case where each server has unit capacity i.e. \(c = 1 \).

2.1 Server capacity: \(c = 1 \)

When server capacity is one, the analytics network can be modeled as an \(M/M/1 \) queue. An \(M/M/1 \) queue consists of a single server with customer arrivals described by a Poisson process and customer service times by an exponential distribution. Thus the distance between two consecutive requesters in the analytics network can be thought of as inter-arrival time between customers in the bulk service \(M/M/1 \) queue.

![Figure 1: Poisson Placement of requesters and servers on the 1-D network with server capacity of one.](image)

2.2 Server capacity: \(c > 1 \)

When the server capacity is more than one, the analytics network can be thought of a bulk service \(M/M/1 \) queue. The server serves a bulk of at most \(c \) customers whenever it becomes free. The service time for the group is exponentially distributed and the customer arrivals are determined by a Poisson process. Thus similar to the previous case, the distance between two consecutive requesters in the analytics network can be thought of as inter-arrival time between customers in the bulk service \(M/M/1 \) queue. However, the distance between two consecutive servers should be mapped to a bulk service time.

Having established an analogy between the analytics network and the bulk service \(M/M/1 \) queue, we now define the state space for the analytics network. Consider the definition of \(N_z \) as the number of requests that traverse through point \(X \in \mathcal{L} \) under MTR strategy. In steady state, \(N_z \) converges to a random variable \(N \) provided \(\lambda < \mu \). Let \(\pi_k \) denote \(\Pr[N = k] \) where \(k = 0, 1, \ldots \). The state space diagram for such a system is shown in Figure 2. Thus we have the following balance equations similar to that of a bulk service \(M/M/1 \) queue [5].

\[
(\lambda + \mu)\pi_k = \mu\pi_{k+1} + \pi_{k-1}, \quad k \geq 1,
\]

\[
\lambda\pi_0 = \mu(\pi_1 + \pi_2 + \ldots + \pi_c).
\]

(2)

By taking the \(z \)-transform and following the procedure in [5], we obtain the steady state probability vector \(\pi = [\pi_0, \pi_1, \ldots] \). By applying Little’s formula, we obtain the following expression for the request distance.

\[
\mathbb{E}[d] = \frac{r_0}{(1 - r_0)\lambda}.
\]

(3)

where \(r_0 \) is the only root in the interval \((0, 1) \) of the following characteristic equation (with \(r \) as the variable).

\[
\mu r^{c+1} - (\lambda + \mu)r + \lambda = 0.
\]

(4)

2.3 Optimal allocation strategy

Next we consider formulating the optimal request allocation strategy for the analytics network taking request distance as metric. The objective is to find a function \(\pi : R \rightarrow S \), neither necessarily injective nor surjective, such that the following is satisfied.

\[
\arg\min \sum_{i \in R} d_\mathcal{L}(r(i), s(\pi(i))) \quad \text{s.t.} \quad \sum_{i \in R} \mathbb{1}_{\pi(i) = j} \leq C_j, \forall j \in S
\]

(5)

The above capacity-constrained assignment problem can be modeled as a min-cost (single commodity) flow problem on a directed graph \(G = (V, E) \), where \(V = R \cup S \cup \{D_R\} \cup \{D_S\} \), where \(D_R \) is a dummy requester node and \(D_S \) is a dummy server node (note that this formulation allows a node to be both a requester and a server), and \(E = R \times S \cup \{D_R\} \times R \cup S \times \{D_S\} \). Assign capacities and costs to all edges \(e \in E \) as follows:

1. For \(e \in \{D_R\} \times R : c_e = 1, w_e = 0 \).
the network simplex algorithm with time complexities of polynomial time solutions exist for this problem, such as corresponding flow variables \(c \) and the fact that the capacities of all edges in \(C \) are all one, \(w_e = d_e(r(i), s(j)) \) assigns flow variables \(x_e \) to each edge \(e \in E \). The assignment problem of (5) corresponds to a min-cost flow problem where \(x_e \) obeys flow capacity constraints \(x_e \leq c_e \) and flow conservation laws at each node in \(G \), i.e., \(\forall v \in V \sum_{w \in N_v^m} x_{(v,w)} = \sum_{v \in N_v^o} x_{(v,w)} \) \(N_v^m \) denotes the set of incoming neighbors of \(v \) and \(N_v^o \) denotes the set of outgoing neighbors of \(v \).

This minimization problem can be solved by obtaining a solution to the min-cost flow problem after assigning demands to dummy variables as follows: \(dem_{D_R} = -|R| \), \(dem_{D_S} = |R| \). The rest of the nodes are assigned zero demand, i.e., \(dem_v = 0, \forall v \in V \setminus \{(D_R) \cup (D_S) \} \). Well-known polynomial time solutions exist for this problem, such as the network simplex algorithm with time complexities of \(O(|R|^6 \log |R|) \) [7]. Moreover, since the edge capacity values \(c_e \) and demands are integral, by the flow integrality theorem [1], the optimal flow values \(x_e \) will also be integral even if the edge costs \(w_e \) are real-valued. Exploiting this property and the fact that the capacities of all edges in \((D_R) \times R \) and \(R \times S \) are one, we get a valid 0-1 integral assignment to the corresponding flow variables \(x_e \). That is, each request in \(R \) gets sent (assigned) to exactly one server in the optimal solution. Note that when server capacities \(C_j \) are all one, this degenerates to a minimum-weight matching problem on a weighted bipartite graph.

2.4 Performance Comparison

We compare the performance of MTR strategy with the optimal strategy obtained by solving optimization problem (5). We consider a collection of 500 requesters and 500 servers i.e. \(|R| = |S| = 500 \) and the results are presented in Table 1. The MTR strategy delivers performance close to a factor 2 of the optimal strategy. We also observe an increase in the performance of MTR strategy by increasing the capacity \(c \) of the servers.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(\mu)</th>
<th>(c)</th>
<th>(d_{mtr})</th>
<th>(d_{opt})</th>
<th>(d_{opt}/d_{mtr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9</td>
<td>1</td>
<td>1</td>
<td>0.41</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>1</td>
<td>2</td>
<td>0.69</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>500</td>
<td>1</td>
<td>0.5011</td>
<td>0.5011</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Comparison of MTR and optimal allocation strategy where \(d_{mtr} \) and \(d_{opt} \) are the request distance in MTR (Equations (1) and (3)) and optimal strategy under single resource scenario.

2. For \(e = (j, D_S) \), \(j \in S : c_e = C_j, w_e = 0 \)
3. For \(e = (i,j) \in R \times S : c_e = 1, w_e = d_e(r(i), s(j)) \)

3.1 Identical service rates \((\mu_1 = \mu_2) \)

The approximated request distance for this scenario is obtained from the expression for the expected sojourn time of a fork join queue with homogeneous servers as [6]:

\[
E[d] = \frac{12\mu - \lambda}{8\mu(\mu - \lambda)}
\]

(6)

We compare the experimental and theoretical values of request distance for a set of \(|R| = |S| = 10^6 \) devices in Table 2. The experimental results match with the theoretical results (obtained from Equation (6)).

4. CONCLUSION

We proposed a queuing theoretic model for analyzing the behavior of resource allocation in a one dimensional distributed analytics network. We studied two specific scenarios: single and two resources scenarios and mapped them to the corresponding queuing model. We also formulated the optimal request allocation strategy taking request distance as metric. Going further, we aim to extend our results in two ways. First we would like to extend the analysis for MTR strategy to a two dimensional geographic region. Second we would also consider analyzing different request allocation strategies such as move to right or left.

5. REFERENCES