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1. INTRODUCTION

Network tomography [5] is an essential approach for in-
ferring the internal network (e.g., link) parameters, such as
the loss rate, delay, and bandwidth, via end-to-end (exter-
nal) measurements. These external measurements are prac-
tically more accessible than the network’s internal compo-
nents (e.g., routers), which may be owned by different inter-
net service providers (ISPs) [2] and are difficult to access.
A stochastic network tomography problem consists of a net-
work with a set L of L := |L| links, each link ℓ ∈ L with
an unknown parameter µℓ that characterizes its stochastic
property (e.g., µℓ may represent loss rate or average delay
of the link), and a setM of M := |M| probes. Performing
a probe on the network refers to generating one or multiple
stochastic measurements (i.e., observations) that depend on
the network parameters. Network tomography aims to esti-
mate the network parameters µℓ from the observations.

Most prior works on network tomography focus on devis-
ing estimators for the network parameters from the stochas-
tic observations, e.g., in packet delay tomography [3] and
loss network tomography [2]. That is, after obtaining these
stochastic observations from probes, prior works aim to de-
vise good static estimators to infer the network parameters.
While the static estimator design is crucial for network to-
mography, another essential yet less explored task is, with-
out knowing the network parameters (µℓ)ℓ∈L, how to dy-
namically collect online observations to efficiently estimate
the network parameters using the least number of probes. In
short, this is a sequential decision-making problem (a.k.a.,
online learning) [1] for network tomography.

However, to apply online learning techniques to network
tomography, one needs to tackle unique challenges not present
in common online learning scenarios. A key technical chal-
lenge comes from the complex feedback mechanism in net-
work tomography. In standard online learning settings, the
feedback is usually a scalar stochastic reward or loss, which
is only related to the action (probe) taken by the algorithm.
In contrast, in network tomography, feedback consists of the
stochastic observations (e.g., a random vector) generated by
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the probes via the compound effect of the links across a set
of paths traversed by the probe. This complex feedback
mechanism makes the design of the online algorithm and
the analysis of its regret challenging.

2. MODELING AND FORMULATION

We formulate a general network tomography task as an
online experimental design problem. Denote G = (N ,L)
as a network topology with a set of N∈ N+ nodes N :=
{1, 2, . . . , N} and a set of L ∈ N+ links L := {1, 2, . . . , L}.
Each link ℓ ∈ L is associated with a stochastic model Xℓ

representing the characteristic of the link, e.g., a Bernoulli
random variable for signal loss [2]. We refer to a connection
between two nodes (source and destination) across several
consecutive links as a path in the network. The tomography
task assumes that the link model is known, but that its
parameters, denoted as a vector µ := (µℓ)ℓ∈L (e.g., the link
success rates), are unknown.

The network tomography task aims to estimate these un-
known link parameters via a given set of M ∈ N+ probing
experimentsM := {1, 2, . . . ,M} (called probes later), exam-
ples of which are unicast [4] and multicast [2]. Each probe
m ∈M is associated with one path or a set of paths consist-
ing of one source node (sender) and a set of destination nodes
(receivers) denoted as Nm ⊆ N , and the feedback Ym ∈
R|Nm| from the probing experiment m consists of received
signals at the destination nodes in Nm. Denote the proba-
bility of observing feedback Ym given network parameters µ
and probing experimentm as fm(Ym;µ). The goal is to esti-
mate the network parameters based on the feedback from the
probing experiments. For ease of presentation, we follow the
common identifiability assumption in network tomography
literature [4] that the network parameters µ can be uniquely
determined from the feedback of sufficiently many probing
experiments in M. Given a set of T ∈ N+ probe-feedback
pairs H := {(mt,Ymt,t)}Tt=1, we define the log-likelihood

function as L(µ;H) :=
∑T

t=1 log fmt(Ymt,t;µ). The maxi-
mum likelihood estimation (MLE) estimator for the network
parameters µ is defined as MLE(H) := argmaxµ L(µ;H).1

1Throughout this paper, we assume the outputs of the
argmin and argmax functions are unique; otherwise, one
can break the tie arbitrarily.



Algorithm 1 Optimal Probe Allocation (Opal)

Input: M (set of probes), N (set of nodes), L (set of links),
T (number of decision rounds), F (optimal experimen-
tal design criterion), MLE (estimator), S0 := (Sm,0)m∈M
(initial sample sizes)

Initialize: H0 ← ∅ (history), µ̂0 ← 0 (parameter esti-
mates), T0 ←

∑
m∈M Sm,0 (initial length)

1: for each time step t = 1, 2, . . . , T do
2: if ∃m ∈M : Sm,t < Sm,0 then ▷ Initial phase

3: mt ← randomly pick from {m∈M:Sm,t<Sm,0}
4: else ▷ Chasing phase

5: µ̂t ← MLE(Ht−1)
▷ Use MLE to update the estimates µ̂t

6: ϕ̂∗
t ← argminϕ F (µ̂t;ϕ)
▷ Calculate estimated optimal allocation

7: mt ← argmaxm∈M ϕ̂∗
m,t − (Sm,t/t)

▷ Chase the estimated allocation

8: end if
9: Perform probe mt and observe signals Ymt,t =

(Yn,t)n∈Nmt
for its destination nodes

10: Ht ← Ht−1∪{(mt,Ymt,t)}, Smt,t ← Smt,t−1+1 and
Sm,t ← Sm,t−1 for all m ̸= mt

11: end for
Output: µ̂T+1 ← MLE(HT ) (final estimates) and ϕ̂T+1 ←

argmaxϕ F (µ̂T+1;ϕ) (final allocation)

Experimental DesignWe denote ϕ ∈ ∆M−1 as the allo-
cation ratio (probability distribution) of the number of times
of each of the M probes Sm over the total number of times
of performing probes

∑
m∈M Sm, where ∆M−1 is the proba-

bility simplex in RM . Denote I(µ;ϕ) as the Fisher informa-
tion matrix (FIM) of probing the network via the mixture of
multiple probes according to an allocation ϕ with respect to
the network parameters µ. We denote F (µ;ϕ) as a general
optimal experimental design criterion and denote ϕ∗(µ) :=
argminϕ F (µ;ϕ) as the optimal allocation function given

parameter µ and OED criterion F 2 For example, in A-
optimal scenario, we have F (µ;ϕ) = tr

(
I−1(µ;ϕ)

)
, and

in D-optimal scenario, we have F (µ;ϕ) = (det(I(µ;ϕ)))−1.

3. OPTIMAL PROBE ALLOCATION

Opal (presented in Algorithm 1) consists of two phases:
(a) an initial sampling phase (Line 3) and (b) a chasing
phase (Lines 5-7). The initial phase takes the initial sample
sizes S0 = (Sm,0)m∈M as input and performs each probe
m ∈ M accordingly (Lines 2–3). Collecting these T0 :=∑

m∈M Sm,0 initial samples ensures that the first estimates
µ̂T0 for link parameters at Line 5 are not too far away from
the true parameters µ.

The chasing phase proceeds for each of the remaining steps
t = T0+1, T0+2, . . . , T . Denote Sm,t as the number of times
that the probe m is performed up to and including time t,
and use vector St := (Sm,t)m∈M to represent all the sample
sizes. For each time step t > T0, the algorithm first updates
the MLE estimates µ̂t of the network parameters using the
latest history Ht−1 = {(ms,Yms,s)}t−1

s=1 (Line 5). With the

2We slightly abuse the ϕ∗ notation without the input (µ)
to denote the optimal allocation based on the actual param-
eters.

updated estimates µ̂t, the algorithm generates an estimated
optimal allocation ϕ̂∗

t based on the latest link parameter
estimates µ̂t (Line 6). Then, the algorithm subtracts the
actual allocation St/t from the estimated optimal alloca-

tion ϕ̂∗
t element-wise (both are M -entry vectors), where the

(possibly negative) entries of the output vector represent the
inadequacy of the allocated fractions to each probe. Last,
the algorithm performs the probe mt with the worst (high-
est) allocation inadequacy once (Line 7)—chasing the esti-

mated optimal allocation ϕ̂∗
t—to collect a new observation,

and updates the sample sizes St (Lines 9–10).
The above estimated optimal allocation chasing step is

the core of Opal, which dynamically adjusts the probe al-
location based on the estimated optimal allocation ϕ̂∗

t at
each time step t. After both phases, the algorithm outputs
the final MLE estimates µ̂T+1 and final estimated optimal
allocation ϕ̂T+1.

4. ANALYSIS

We present two general conditions for the network tomog-
raphy problem and then, the main theorem that character-
izes the regret of Opal.

Condition 1 (Lipschitz Continuity). The optimal experi-
mental design criterion F (µ;ϕ) is Lipschitz continuous with
respect to the allocation ϕ. That is, for some constant α > 0
and any two allocations ϕ,ϕ′ ∈ F where F ⊆ ∆M−1 is the
set of all feasible allocations that support the parameter iden-
tifiability,3 we have F (µ;ϕ)− F (µ;ϕ′) ⩽ α∥ϕ− ϕ′∥∞.

Further, the optimal allocation function ϕ∗(µ) is Lipschitz
continuous with respect to µ. That is, for some constant
β > 0 and any two sets of feasible network parameters µ,µ′,
we have ∥ϕ∗(µ)− ϕ∗(µ′)∥∞ ⩽ β∥µ− µ′∥∞.

Condition 2 (Estimator Concentration / Confidence Inter-
val). At any decision round t, the confidence interval (with
confidence 1− δ for parameter δ ∈ (0, 1)) for any parameter
µℓ of a link ℓ ∈ L is an interval centered at its MLE esti-
mate µ̂ℓ,t with radius

∑
m∈M cℓ,m

(
log δ−1/Sm,t

)γℓ,m , where
cℓ,m ⩾ 0, γℓ,m > 0 are parameters depending on the network
and tomography probes, and Sm,t is the number of times that
probe m is performed up to round t.

Theorem 1. Given Conditions 1 and 2 with δ = 1/(LT 2),
for time horizon T > 0, initial probe times Sm,0 = ξT , m ∈
M, for any ξ ∈ (0, 1), with probability of at least 1 − 1/T ,
Opal satisfies,

RT = F (µ;ϕT )− F (µ;ϕ∗)

⩽
α

(1− ξ)T
+ 4αβcmax

(
log(LT )

ξT

)γmin

+ αξ1

{
∃m ∈M : ϕ∗

m < ξ + 4αβcmax

(
log(LT )

ξT

)γmin
}
,

where C = O(αβcmax) is a constant that depends on the
probing experiments and network, independent of time hori-
zon T , α and β are from Condition 1, parameters cmax :=
3The set F contains all interior points and perhaps a part of
the boundary points of the simplex set ∆M−1. For example,
in the classical loss star network tomography via unicasts in
Section 5, all unicast probes are necessary for identifying the
network parameters. Hence, any allocation on the boundary
(i.e., allocations contain zero entries) does not correspond to
a feasible allocation, and F = ∆M−1 \ ∂∆M−1.



maxℓ∈L
∑

m∈M cℓ,m and γmin := min(ℓ,m)∈L×M:γℓ,m>0 γℓ,m
are from Condition 2, and 1{·} is the indicator function.

5. OPAL FOR UNICAST STAR NETWORK

In this case study, we examine loss tomography in a star
network with L links via unicast.

Lipschitz Continuity Based on the derivation in [4,
Theorem 6], we compute the trace of the inverse of the
Fisher information matrix I(µ;ϕ) for the L-link star net-
work as follows,

F (µ;ϕ) = tr I−1(µ;ϕ) =

M∑
m=1

1

ϕm
Am(µ), (1)

where Am(µ) := 1−νm
νm

∑L
ℓ=1 µ

2
ℓκℓ,m is a function of the link

parameters µ, and κℓ,m := (Q−1)ℓ,m denotes the (ℓ,m)-
entry of the inverse of the measurement matrix Q.

By the method of Lagrange multipliers, the A-optimal
solution for minimizing F (µ;ϕ) is

ϕ∗
m =

√
Am(µ)∑

m′∈M

√
Am′(µ)

, ∀m ∈M. (2)

As the analytical solutions of the A-optimal design in (1)
and (2) only contain basic calculations and are thus differ-
entiable, we verify the Lipschitz continuity in Condition 1.

Estimator Concentration We also prove that the con-
centration rate of the MLE estimator for the link parameters
µ in the star network as follows,

Theorem 2. For unicast star network we have, with a prob-
ability of at least 1− δ,

µℓ ∈

µ̂ℓ −
∑

m∈M:κℓ,m ̸=0

cm,ℓ

√
log(δ−1/M)

Sm
,

µ̂ℓ +
∑

m∈M:κℓ,m ̸=0

cm,ℓ

√
log(δ−1/M)

Sm

 ,

(3)

where the cm,ℓ for each probe m and link ℓ pair is a constant
that depends on the network topology and link parameters.

This verifies Condition 2 regarding the concentration rate
of the MLE estimator for the link parameters in the unicast
star network, where the exponent parameters are γm,ℓ ∈
{0, 1

2
}, resulting in a minimum nonzero exponent γmin = 1

2
.

Regret of Opal on the Unicast Star Network
With the confidence interval in (3) and δ = 1/LT 2, we
know that O(log T ) samples for each unicast probe suffice
to estimate the link parameters µ with relatively good ac-
curacy. Furthermore, utilizing the Lipschitz continuity of
the A-optimal design allocation in (2), one can derive a
lower bound ξ for the optimal allocation ratio ϕ∗

m for all
probes m ∈ M. Consequently, the regret of Opal for the
A-optimal design under the loss star network is expressed as

RT = tr I−1(µ;ϕT )− tr I−1(µ;ϕ∗) = O

((
log T
T

) 1
2

)
.

Empirical Evaluation of Opal

We present numerical simulations to evaluate the perfor-
mance of Opal) in the above tomography task. We consider

Figure 1: MSE Comparison in 3-Link Star Network

three baselines: an iterative algorithm proposed in [4, Algo-
rithm 2], the A-optimal allocation, and a uniform allocation.
The iterative algorithm is batch-based. It performs probes
in each batch (consisting of 100 time steps) according to its
iteratively updated allocation. The initial sampling phase of
Opal is set to T0 = 0.05 · T uniformly over all probes. The
A-optimal allocation policy follows the ϕ∗ that minimize the
A-optimal experimental design F (µ,ϕ) assuming the prior
knowledge of link parameters µ, and the uniform allocation
policy follows the ϕunif. = 1/L. Figure 1 reports the mean
square error (MSE), E[∥µ̂t − µ∥22], of these four algorithms
in the a 3-link star network, which Opal performs as well
as the A-optimal and outperforms other baselines.

6. CONCLUSION

This paper introduces a novel and general online exper-
imental design algorithm for network tomography, termed
online probe allocation (Opal). Theoretically, Opal is the
first algorithm to offer rigorous regret guarantees for net-
work tomography. We establish these guarantees by identi-
fying two critical conditions: Lipschitz continuity and con-
fidence interval concentration. On the practical side, we
validate these theoretical conditions in classical loss unicast
networks, representing key use cases for network tomogra-
phy. Empirically, we illustrate the superior performance of
Opal compared to existing methods.
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