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ABSTRACT
We consider large-scale load balancing systems where pro-
cessing time distribution of tasks depend on both task and
server types. We analyze the system in the asymptotic
regime where both the number of task and server types tend
proportionally to infinity. In such heterogeneous setting,
popular policies like Join Fastest Idle Queue (JFIQ), Join
Fastest Shortest Queue (JFSQ) are known to perform poorly
and they even shrink the stability region. Moreover, to the
best of our knowledge, in this setup, finding a scalable pol-
icy with provable performance guarantee has been an open
question prior to this work. In this paper, we propose and
analyze two asymptotically delay-optimal dynamic load bal-
ancing policies: (a) one that efficiently reserves the process-
ing capacity of each server for “good” tasks and route tasks
under the Join Idle Queue policy; and (b) a speed-priority
policy that increases the probability of servers processing
tasks at a high speed. Leveraging a framework inspired by
the graphon literature and using the mean-field method and
stochastic coupling arguments, we prove that both policies
above achieve asymptotic zero queueing, whereby the prob-
ability that a typical task is assigned to an idle server tends
to 1 as the system scales.
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1. INTRODUCTION
Advanced cloud computing platforms, such as AWS, Azure,

and Google Cloud, handle millions of requests per second.
Efficiently assigning tasks across servers using a load bal-
ancing algorithm is critical in such environments. While
previous theoretical works have mostly focused on homoge-
neous load balancing models, where parallel servers process
only one type of task at the same rate, real-world cloud
computing platforms receive requests containing multiple
classes of tasks with varying characteristics, such as access-
ing websites, training machine learning models, or backing
up data. Additionally, with the expansion of these plat-
forms, servers can be of different types (multi-skilled), as
evident from AWS’s website, which lists at least 9 server
types with varying memory and bandwidth. Moreover, due
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to the storage capacity limitation at servers (a.k.a. data lo-
cality), a server can only have required resource files to ex-
ecute only a (small) subset of tasks. Thus, it is natural
to model such large-scale data center networks as heteroge-
neous parallel-server systems, where the time to process a
task in a server depends on both the type of the task and that
of the server. Even though our primary motivation is data
center networks, it is worthwhile to mention that similar
heterogeneity exists in many other service systems as well.
For example, in hospitals patients arriving at the emergency
room may have different types of emergencies and multiple
medical staff available, or in manufacturing systems differ-
ent types of machines and workers are present for different
operations, such as assembly, packaging, and painting.

For such general heterogeneous setting, popular routing
policies, like Join Shortest Queue (JSQ), Join Idle Queue
(JIQ), Join Fastest Shortest Queue (JFSQ) and the Join
Fastest Idle Queue (JFIQ) are known to perform poorly.
One reason is that they prioritize servers with the shortest
or idle queue and might assign tasks to servers that can-
not process at a relatively high speed with high probability,
leading to inefficient server utilization.

In the seminal work [3], Stolyar proposed the MinDrift
policy, which can be understood as the Gcµ-rule ([2, Sec-
tion 4]) in the (output-queued) load balancing setup. It has
been shown that MinDrift asymptotically minimizes the
server workload in the conventional heavy traffic regime.
However, implementing the MinDrift policy requires the
dispatcher to know the total expected workload and service
rate of every compatible server for the new task, which could
result in a prohibitive communication burden when dealing
with a large number N servers.

Model description. Consider a heterogeneous parallel-
server system denoted by GN = (WN ,VN ,λN ,UN ). In this
system, WN = {1, ...,W (N)} represents the set of dispatch-
ers, where each dispatcher i ∈ WN can only handle one
type of task. Hence, the terms ‘task-type’ and ‘dispatcher’
will be used interchangeably. VN = {1, ..., N} denotes the
set of servers, where each server j ∈ VN has a dedicated
queue with infinite buffer capacity, and tasks are sched-
uled using the FCFS policy. The arrival process of tasks
at the dispatcher i ∈ WN is a Poisson process with rate
λNi ∈ λN = (λN1 , ..., λ

N
W (N)), independently of other pro-

cesses. UN = (µNi,j , i ∈ WN , j ∈ VN ) ∈ RW (N)×N
+ repre-

sents a matrix of service rates, where the service time of a
type i ∈ WN task at server j ∈ VN is exponentially dis-
tributed with mean 1/µNi,j , if µNi,j > 0. Otherwise (i.e., when



µNi,j = 0), by convention, the server j cannot process type i

tasks. A server j ∈ VN is considered ‘compatible’ for type
i ∈ WN tasks if µNi,j > 0. It is assumed that tasks arriv-
ing at a dispatcher must be instantaneously and irrevocably
assigned to one of the compatible servers. A schematic dia-
gram of the system is shown in Figure 1
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Figure 1: Heterogeneous Load Balancing System GN

Our contribution. In this paper, we propose two scalable
algorithms that achieves the highly desirable ‘zero-queueing’
property in general heterogeneous systems: (a) The first
one using an appropriate rate-matrix pruning step before
the system goes live, we reserve the capacity of each server
for a subset of ‘good’ tasks, which are tasks that can be
processed efficiently. After that, dispatchers assign tasks
to servers according to the vanilla JIQ policy (that does not
use processing rate information). (b) In the second one, each
dispatcher clusters its compatible servers into several groups
based on their service capability. For each new task, the
dispatcher randomly chooses a target group for a new task,
which gives more weight to the group with higher service
rates, and then assigns the task to the shortest or idle queue
within the target group.

2. MAIN RESULTS
We consider a sequence {GN = (WN ,VN ,λN ,UN )}N∈N

of systems and analyze the asymptotic behavior under the
JIQ-type policy. To have consistency in the above sequence,
we assume that the sequence {GN}N∈N has a nested struc-
ture, that is, for all N ∈ N, WN ⊆ WN+1, VN ⊆ VN+1,
and µNi,j = µN+1

i,j , ∀(i, j) ∈ WN × VN . Inspired by the con-
cept of Graphon [1, Chapter 7], we define two membership
mapping functions φi : N → [0, 1), i = 1, 2, for dispatchers
and servers, respectively. Next, we model the heterogeneity
of the processing rates using these mapping functions and a
function f : [0, 1)2 → R+ such that for (i, j) ∈ WN × VN ,
µNi,j = f(φ1(i), φ2(j)). With the function f , we can model
the service rates between dispatchers and servers for all sys-
tems in the sequence in a consistent way, instead of writing
a matrix UN whose dimension explodes as N →∞. Hence,
we formally introduce what we call an ‘f -sequence’ and use
it in the rest of the analysis.

Definition 2.1 (f-sequence). Given a function f :
[0, 1]2 → R+. A sequence {GN}N = (WN ,VN ,UN ,λN )
is an f-sequence, if for each N ∈ N, uNi,j = f(φ1(i), φ2(j)),

∀(i, j) ∈ WN × VN .

We will first analyze the case when f is a step-function and
then use it to approximate the general system.

2.1 Special Case: Stepwise f

In this section, we consider an f -sequence {GN}N∈N with
the stepwise function f defined as follows: for each h ∈ [H]
and m ∈ [M ],

f(x, y) = µh,m ≥ 0, ∀(x, y) ∈ [wh−1, wh)× [vm−1, vm),
(2.1)

where 0 = w0 < w1 < ... < wH = 1 and 0 = v0 < v1 < ... <
vM = 1. By Definition 2.1, for each h ∈ [H] and m ∈ [M ],
and all (i, j) ∈ W×V such that (φ1(i), φ2(j)) ∈ [wh−1, wh)×
[vm−1, vm), µNi,j = f(φ1(i), φ2(j)) = µh,m, which implies
that if φ1(i1) and φ1(i2) are both in [wh−1, wh), the dis-
patchers i1 and i2 are indistinguishable since the rows µNi1 =

(µNi1,1, ..., µ
N
i1,N ) and µNi2 = (µNi2,1, ..., µ

N
i2,N ) are the same.

Hence, dispatchers can be classified into finite classes. Let
WN
h = {i ∈ WN : φ1(i) ∈ [wh−1, wh)} for each h ∈ [H] with
WN = ∪h∈[H]WN

h . Similarly, let VNm = {j ∈ VN : φ2(j) ∈
[vm−1, vm)} for each m ∈ [M ] with VN = ∪m∈[M ]VNm . For
the asymptotic analysis and to avoid heavy traffic, we define
the subcritical regime as follows.

Definition 2.2 (p-Subcritical). The sequence of sys-
tems {GN}N∈N with stepwise f as in (2.1), is said to be in
the subcritical regime if the followings are satisfied:

(i) limN→∞
∑
i∈WN

h
λNi /N = λh > 0, ∀h ∈ [H];

(ii) limN→∞
∑
j∈VN 1(j∈VN

m)/N = vm − vm−1, ∀m ∈ [M ];

(iii) There exists a stochastic matrix p = (ph,m, h ∈ [H],m ∈
[M ]) ∈ [0, 1]H×M such that for all m ∈ [M ],∑

h∈[H]

λhph,m
µh,m(vm − vm−1)

< 1. (2.2)

Recall from earlier discussion that the main challenge in the
current setup is the service rate depends on both dispatcher
and server types. Interestingly, in the p-subcritical regime,
for large enough N , we can (a) construct a subsystem G̃N

that is a union of dispatcher-independent systems, where the
service rate only depends on server-type, and (b), propose a
speed-priority policy called p-based JIQ policy, under which
the evolution of GN can be coupled with a system ĜN a
union of server-independent systems, where the service rate
only depends on dispatcher-type. These are the contents of
Sections 2.1.1 and 2.1.2, respectively.

2.1.1 Union of dispatcher-independent systems
Denote ε∗m := (vm − vm−1) −

∑
h∈[H]

λhph,m

µh,m
, m ∈ [M ].

Let ε := (εh,m)h∈[H],m∈[M ]. Define a polytope Poly(p) as

follows: Poly(p) :=
{
ε =

(
εh,m, h ∈ [H],m ∈ [M ]

)
∈

[0, 1]H×M : ε satisfies (2.3)
}

εh,1 : · · · : εh,M = ph,1 : · · · : ph,M , ∀h ∈ [H],∑
h∈[H]

εh,m ≤ ε∗m, ∀m ∈ [M ]. (2.3)

By the definition of the p-subcritical regime, it is easy to
check that Poly(p) is non-empty. Consider any fixed feasible
solution ε ∈ Poly(p). Using such an ε, for each system GN ,

we can construct a sub-system G̃N (p, ε) = (WN ,VN ,λN , ŨN )
as follows:



• Step 1: For each VNm in G̃N (p, ε), we divide it into
H + 1 separate sets {VNh,m}h∈[H] ∪ VN0,m such that

– |ṼNh,m| = bN(
λhph,m

µh,m
+ εh,m)c, h ∈ [H]

– |ṼN0,m| = |ṼNm | −
∑
h∈[H] |Ṽ

N
h,m| .

• Step 2: For each, h ∈ [H], dispatchers in WN
h is

allowed only assign tasks to servers in ∪m∈[M ]VNh,m.

That is, we set µ̃Ni,j = µNi,j = µh,m, for i ∈ WN
h and

server j ∈ ∪m∈[M ]VNh.m, and set ũNi,j = 0, otherwise.

Note that the constructed system G̃N (p, ε) can be viewed
as the union of H separate dispatcher-independent (i.e., ser-
vice rates depend only on server-types) systems: For h ∈
[H], G̃Nh (p, ε) contains dispatchersWN

h and servers ∪m∈[M ]VNh,m.

Also, for each h ∈ [H], {G̃Nh (p, ε)}N is in the subcritical
regime as well. Thus, by [4, Theorem 2], we have the fol-
lowing theorem.

Theorem 2.3. Consider the stepwise f-sequence {GN}N
in p-subcritical regime. For large enough N , we construct a
subsystem G̃N of GN as described above. Then, under the
JIQ policy, in steady state, an arriving task will be assigned
to an idle server with probability tending to 1 as N →∞.

2.1.2 Union of server-independent systems
Recall the p-subcritical regime with the stochastic ma-

trix p. We now introduce the p-based JIQ policy as follows.

Definition 2.4 (p-based JIQ). Consider a dispatcher
i ∈ WN

h . When a task arrives at dispatcher i, it first se-
lects a target server-type m∗ with discrete distribution p̄h =
(ph,m)m∈[M ] and sends the new task to one of idle servers

uniformly at random in VNm∗ , if any exist, and other wise to
one of the servers in VNm∗ , chosen uniformly at random.

Under the p-based JIQ policy, note that each set VNm
for m ∈ [M ], receives tasks from WN

h , h ∈ [H] with rate
Nλhph,m. Also, servers in VNm are identical. By the Poisson
thinning property, we can view the system GN as the union
of M server-independent systems {ĜNm}m∈[M ], i.e., where

service rates depend only on dispatcher-types. For each ĜNm,
it consists of servers as the same as that in VNm . Tasks that
are served in ĜNm with rate µk will arrive at ĜNm as a Poisson
process with rate Nλp

m,k. By the classical fluid method, we
can establish the zero-queueing property of the policy:

Theorem 2.5. Consider the stepwise f-sequence {GN}N
in p-subcritical regime. Under the p-based JIQ policy, in
steady state, tasks are assigned to idle servers with probabil-
ity tending to 1 as N →∞.

The key for implementing both approaches discussed above
is to find the stochastic matrix p which can be done by
solving the LP in (2.2). Also, both approaches can be im-
plemented in a token-based fashion, inheriting scalability
properties similar to the JIQ policy.

2.2 General Case
In this section, we will discuss how Theorems 2.3 and 2.5

can be extended to the general f case.

Assumption 2.6. (i) (Arrival rate function) There ex-

ists an integrable function λ : [0, 1)→ R+ with
∫ 1

0
λ(x)dx

= a > 0 such that λ(φ1(i)) = λNi , ∀i ∈ WN , N ∈ N.

(ii) (Service rate function) The function f has finitely many
discontinuity points on [0, 1)2, and there exists µo > 0
such that for all x ∈ [0, 1), |{y ∈ [0, 1) : f(x, y) ≥
µo}| > 0, where | · | is the Lebesgue measure.

(iii) (Regularity of membership map) For any subinterval
E ⊆ [0, 1),

lim
N→∞

∑
i∈WN

1(φ1(i)∈E)

W (N)
= lim
N→∞

∑
j∈VN

1(φ2(j)∈E)

N
= |E|.

(iv) limN→∞
W (N)
N

= ξ > 0, where ξ is a constant.

Based on the above assumption, we define the subcritical
regime for the general f -sequence as follows.

Definition 2.7 ((w,v,p)-Subcritical Regime). The
f-sequence {GN}N is in the subcritical regime if the follow-
ing is satisfied: There exist a pair of partitions (w,v) =
(0 = w0 < w1 < · · · < wH = 1, 0 = v0 < v1 < · · · < vM = 1)
of [0, 1] and a stochastic matrix p ∈ [0, 1]H×M such that

ρm(w,v,p) :=
∑
h∈[H]

ph,mλh
(vm − vm−1)µ∗h,m

< 1, m ∈ [M ],

(2.4)
where, for each h ∈ [H] and m ∈ [M ], λh = 1

ξ

∫ wh

wh−1
λ(x)dx

and µ∗h,m = min(x,y)∈[wh−1,wh)×[vm−1,vm) f(x, y).

With the tuple (w,v,p), we can construct a stepwise f ′-
sequence {G′N}N as the following:

• Each system G′N has the same dispatcher set and
server set as that of the system GN .

• For any (x, y) ∈ [wh−1, wh) × [vm−1, vm), f ′(x, y) =
min(a,b)∈[wh−1,wh)×[vm−1,vm) f(x, y).

It is not hard to check that the f ′-sequence {G′N}N is also
in the (w,v,p)-subcritical regime. Since by the definition,
f ′(x, y) ≤ f(x, y) for all (x, y) ∈ [0, 1]2, it is also intuitive
that the system GN will have a better performance than the
system G′N in terms of queue length. Moreover, based on
(w,v,p), we can construct the sequence {G̃N}N and design
the p-based JIQ policy as we did in Section 2.1. Hence,
Theorems 2.3 and 2.5 will hold for the general f -sequence
in the subcritical regime as well.
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